Browse > Article

Fundamentals of Particle Fouling in Membrane Processes  

Bhattacharjee Subir (Civil and Environmental Engineering Department, Korea University)
Hong Seungkwan (Department of Mechanical Engineering, University of Albertit Edmonton)
Publication Information
Korean Membrane Journal / v.7, no.1, 2005 , pp. 1-18 More about this Journal
Abstract
The permeate flux decline due to membrane fouling can be addressed using a variety of theoretical stand-points. Judicious selection of an appropriate theory is a key toward successful prediction of the permeate flux. The essential criterion f3r such a decision appears to be a detailed characterization of the feed solution and membrane properties. Modem theories are capable of accurately predicting several properties of colloidal systems that are important in membrane separation processes from fundamental information pertaining to the particle size, charge, and solution ionic strength. Based on such information, it is relatively straight-forward to determine the properties of the concentrated colloidal dispersion in a polarized layer or the cake layer properties. Incorporation of such information in the framework of the standard theories of membrane filtration, namely, the convective diffusion equation coupled with an appropriate permeate transport model, can lead to reasonably accurate prediction of the permeate flux due to colloidal fouling. The schematic of the essential approach has been delineated in Figure 5. The modern approaches based on appropriate cell models appear to predict the permeate flux behavior in crossflow membrane filtration processes quite accurately without invoking novel theoretical descriptions of particle back transport mechanisms or depending on adjust-able parameters. Such agreements have been observed for a wide range of particle size ranging from small proteins like BSA (diameter ${\~}$6 nm) to latex suspensions (diameter ${\~}1\;{\mu}m$). There we, however, several areas that need further exploration. Some of these include: 1) A clear mechanistic description of the cake formation mechanisms that clearly identifies the disorder to order transition point in different colloidal systems. 2) Determining the structure of a cake layer based on the interparticle and hydrodynamic interactions instead of assuming a fixed geometrical structure on the basis of cell models. 3) Performing well controlled experiments where the cake deposition mechanism can be observed for small colloidal particles (< $1\;{\mu}m$). 4) A clear mechanistic description of the critical operating conditions (for instance, critical pressure) which can minimize the propensity of colloidal membrane fluting. 5) Developing theoretical approaches to account for polydisperse systems that can render the models capable of handing realistic feed solutions typically encountered in diverse applications of membrane filtration.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. G. Fane and C. J. D. Fell, A Review of Fouling and Fouling Control in Ultrafiltration. Desalination, 62, 117-136 (1987)   DOI   ScienceOn
2 E. Fountoukidis, Z. B. Maroulis, and D. Marinoskouris, Modeling of Calcium-Sulfate Fouling of Reverse-Osmosis Membranes. Desalination, 72, 293-318 (1989)   DOI   ScienceOn
3 X. H. Zhu and M. Elimelech, Colloidal Fouling of Reverse Osmosis Membranes - Measurements and Fouling Mechanisms. Environ. Sci. Technol., 31, 3654-3662 (1997)   DOI   ScienceOn
4 A. S. Jonsson and B. Jonsson, Colloidal fouling during ultrafiltration. Sep. Sci. Technol., 31, 26112620 (1996)   DOI   ScienceOn
5 W. S. Opong and A. L. Zydney, Diffusive and Convective Protein-Transport Through Asymmetric Membranes. AIChE J., 37, 1497-1510 (1991)   DOI
6 W. M. Clark, A. Bansal, M. Sontakke, and Y. H. Ma, Protein Adsorption and Fouling in Ceramic Ultrafiltration Membranes. J. Membrane Sci., 55, 21-38 (1991)   DOI   ScienceOn
7 P. Blanpain-Avet, N. Doubrovine, C. Lafforgue, and M. Lalande, The effect of oscillatory flow on crossflow micro filtration of beer in' a tubular mineral membrane system - Membrane fouling resistance decrease and energetic considerations. J. Membrane Sci., 152, 151-174 (1999)   DOI   ScienceOn
8 S. Chellam and M. R. Wiesner, Particle-Transport in Clean Membrane Filters in Laminar-Flow. Environ. Sci. Technol., 26, 1611-1621 (1992)   DOI
9 P. S. Cartwright, Industrial Waste-Water Treatment With Membranes - a United- States Perspective. Water Sci. Technol., 25, 373-390 (1992)
10 D. N. Petsev, V. M. Starov, and I. B. Ivanov, Concentrated Dispersions of Charged Colloidal Particles - Sedimentation, Ultrafiltration and Diffusion. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 81, 65-81 (1993)   DOI   ScienceOn
11 R. M. McDonogh, K. Welsch, A. G. Fane, and C. J. D. Fell, Incorporation of the Cake Pressure Profiles in the Calculation of the Effect of Particle Charge On the Permeability of Filter Cakes Obtained in the Filtration of Colloids and Particulates. J. Membrane Sci., 72, 197-204 (1992)   DOI   ScienceOn
12 P. Bacchin, P. Aimar, and V. Sanchez, Influence of surface interaction on transfer during colloid ultrafiltration. J. Membrane Sci., 115, 49-63 (1996)   DOI   ScienceOn
13 G. K. Batchelor, Journal of Fluid Mechanics, 74, 1 (1976)   DOI   ScienceOn
14 N. Arora and R. H. Davis, Effects of axial pressure drop on the length-averaged permeate flux in crossflow microfiltration. Chem. Eng. Commun., 132, 51-67 (1995)   DOI   ScienceOn
15 J. Altmann and S. Ripperger, Particle deposition and layer formation at the crossflow microfiltration. J. Membrane Sci., 124, 119-128 (1997)   DOI   ScienceOn
16 H. S. Alkhatim, M. I. Alcaina, E. Soriano, M. I. Iborra, J. Lora, and J. Arnal, Treatment of Whey Effluents From Dairy Industries By Nanofiltration Membranes. Desalination, 119, 177-183 (1998)   DOI   ScienceOn
17 M. H. Almalack and G. K. Anderson, Use of Crossflow Microfiltration in Wastewater Treatment. Water Res., 31, 3064-3072 (1997)   DOI   ScienceOn
18 Y. Z. Xujiang, J. Dodds, and D. Leclerc, Cake Characteristics in Cross-Flow and Dead-End Microfiltration. Filtration Sep., 32, 795-798 (1995)   DOI   ScienceOn
19 A. D. Marshall, P. A. Munro, and G. Tragardh, The Effect of Protein Fouling in Microfiltration and Ultrafiltration On Permeate Flux, Protein Retention and Selectivity - a Literature-Review. Desalination, 91, 65-108 (1993)   DOI   ScienceOn
20 M. Cheryan, Ultrafiltration and microfiltration Handbook (1999)
21 G. Belfort, Membrane Modules - Comparison of Different Configurations Using Fluid-Mechanics. J. Membrane Sci., 35, 245-270 (1988)   DOI   ScienceOn
22 R. V. Lopez, S. Elmaleh, and N. Ghaffor, CrossFlow Ultrafiltration of Hydrocarbon Emulsions. J. Membrane Sci., 102, 55-64 (1995)   DOI   ScienceOn
23 L. Defrance and M. Y. Jaffrin, Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment. J. Membrane Sci., 152, 203-210 (1999)   DOI   ScienceOn
24 K. Welsch, R. M. McDonogh, A. G. Fane, and C. J. D. Fell, Calculation of Limiting Fluxes in the Ultrafiltration of Colloids and Fine Particulates. J. Membrane Sci., 99, 229-239 (1995)   DOI   ScienceOn
25 F. Rouvet, K. Fiaty, P. Laurent, and J. K. Liou, Modelling and Simulation of Membrane Fouling in Batch Ultrafiltration On Pilot Plant. Comput. Chem. Eng., 22, S 901-S 904 (1998)   DOI   ScienceOn
26 A. B. Koltuniewicz and R. W. Field, Process factors during removal of oil-in-water emulsions with cross-flow microfiltration. Desalination, 105, 79-89 (1996)   DOI   ScienceOn
27 D. Belhocine, H. Grib, D. Abdessmed, Y. Comeau, and N. Mameri, Optimization of Plasma Proteins Concentration By Ultrafiltration. J. Membrane Sci., 142,159-171 (1998)   DOI   ScienceOn
28 L. F. Song, Flux Decline in Crossflow Microfiltration and Ultrafiltration - Mechanisms and Modeling of Membrane Fouling. J .Membrane Sci., 139, 183-200 (1998)   DOI   ScienceOn
29 J. Lindau and A. S. Jonsson, Cleaning of Ultrafiltration Membranes After Treatment of Oily WasteWater. J. Membrane Sci., 87, 71-78 (1994)   DOI   ScienceOn
30 J. A. Howell, D. Wu, and R. W. Field, Transmission of bovine albumin under controlled flux ultrafiltration. J. Membrane Sci., 152, 117-127 (1999)   DOI   ScienceOn
31 S. S. Madaeni, The Effect of Operating Conditions On Critical Flux in Membrane Filtration of Latexes. Proc. Safety Environ. Prot., 75, 266-269 (1997)   DOI   ScienceOn
32 L. Vera, R. Villarroel, S. Delgado, and S. Elmaleh, Can microfiltration of treated wastewater produce suitable water for irrigation? Water Sci. Technol., 38, 395-403 (1998)   DOI   ScienceOn
33 F. W. Altena, G. Belfort, J. Otis, F. Fiessinger, J. M. Rovel, and J. Nicoletti, Particle Motion in a Laminar Slit Flow - a Fundamental Fouling Study. Desalination, 47, 221-232 (1983)   DOI   ScienceOn
34 A. Maartens, P. Swart, and E. P. Jacobs, Enzymatic Cleaning of Ultrafiltration Membranes Fouled in Wool-Scouring Effluent. Water SA, 24, 71-76 (1998)
35 S. Chellam, C. A. Serra, and M. R. Wiesner, Estimating Costs For Integrated Membrane Systems. Journal American Water Works Association, 90, 96-104 (1998)
36 M. Kennedy, S. M. Kim, I. Mutenyo, L. Broens, and J. Schippers, Intermittent Crossflushing of Hollow Fiber Ultrafiltration Systems. Desalination, 118, 175-187 (1998)   DOI   ScienceOn
37 F. W. Altena and G. Belfort, Lateral Migration of Spherical-Particles in Porous Flow Channels Application to Membrane Filtration. Chem. Eng. Sci., 39, 343-355 (1984)   DOI   ScienceOn
38 R. M. McDonogh, H. Bauser, N. Stroh, and H. Chmiel, Concentration Polarization and Adsorption Effects in Cross-Flow Ultrafiltration of Proteins. Desalination, 79, 217-231 (1990)   DOI   ScienceOn
39 W. F. Blatt, A. Dravid, A. S. Michaels, and L. Nelson, Solute Polarization and Cake Formation in Membrane Ultrafiltration: Causes, Consequences, and Control Techniques. in Membrane Science and Technology: Industrial, Biological, and Waste Treatment Processes. Columbus, Ohio: Plenum Press (1970)
40 D. R. Trettin and M. R. Doshi, eds. Pressure independent ultrafiltration: is it gel limited or os- motic pressure limited? Synthetic Membranes Vol II: Ultrafiltration and Hyperfiltration Uses, ed. A. F. Turbak. Vol. 154. ACS Symposium Series. 373. (1983)
41 S. Bhattacharjee, A. S. Kim, and M. Elimelech, Concentration polarization of interacting solute particles in cross-flow membrane filtration. J. Colloid Interface Sci., 212, 81-99 (1999)   DOI   ScienceOn
42 M. W. Chudacek and A. G. Fane, The dynamics of polarization in unstirred and stirred ultrafiltration. J. Membrane Sci., 21, 145 (1984)   DOI   ScienceOn
43 G. Crozes, C. Anselme, and J. Mallevialle, Effect of Adsorption of Organic-Matter On Fouling of Ultrafiltration Membranes. J. Membrane Sci., 84, 61-77 (1993)   DOI   ScienceOn
44 W. J. C. Holt, S. L. Carnie, and D. Y. C. Chan, Colloidal interactions in low volume fraction pressurized ultrafiltration systems. J. Colloid Interface Sci., 173, 304-318 (1995)   DOI   ScienceOn
45 S. Bhattacharjee, A. Sharma, and P. K. Bhattacharya, Surface Interactions in Osmotic-Pressure Controlled Flux Decline During Ultrafiltration. Langmuir, 10, 4710-4720 (1994)   DOI   ScienceOn
46 G. Tragardh, Membrane Cleaning. Desalination, 71, 325-335 (1989)   DOI   ScienceOn
47 C. Jucker and M. M. Clark, Adsorption of Aquatic Humic Substances On Hydrophobic Ultrafiltration Membranes. J. Membrane Sci., 97, 37-52 (1994)   DOI   ScienceOn
48 F. A. DiGiano, A. Braghetta, and B. Utne, Nanofiltration Fouling by Natural Organic Matter and Role of Particles in Flux Enhancement. in American Water Works Association 1993. Membrane Technology Conference. Baltimore, MD. (1993)
49 L. Giomo, L. Donato, S. Todisco, and E. Drioli, Study of Fouling Phenomena in Apple Juice Clarification By Enzyme Membrane Reactor. Sep. Sci. Technol., 33, 739-756 (1998)   DOI   ScienceOn
50 M. R. Wiesner, M. M. Clark, and J. Mallevialle, Membrane Filtration of Coagulated Suspensions. J. Environ. Eng.-ASCE, 115, 20-40 (1989)   DOI   ScienceOn
51 R. H. Davis and S. A. Birdsell, Hydrodynamic Model and Experiments For Cross-Flow Microfiltration. Chem. Eng. Commun., 49, 217-234 (1987)   DOI   ScienceOn
52 G. B. Vandenberg and C. A. Smolders, The Boundary-Layer Resistance Model For Unstirred Ultrafiltration - a New Approach. J. Membrane Sci., 40, 149-172 (1989)   DOI   ScienceOn
53 J. N. Wu, M. A. Eiteman, and S. E. Law, Eval- uation of Membrane Filtration and Ozonation Processes For Treatment of Reactive-Dye Wastewater. J. Environ. Eng.-ASCE, 124, 272-277 (1998)   DOI   ScienceOn
54 S. Hong, R. S. Faibish, and M. Elimelech, Kinetics of Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions. J. Colloid Interface Sci., 196, 267-277 (1997)   DOI   ScienceOn
55 J. Lindau, A. S. Jonsson, and R Wimmerstedt, The Influence of a Low-Molecular Hydrophobic Solute' on the Flux of Polysulfone Ultrafiltration Membranes With Different Cutoff. J. Membrane Sci., 106, 9-16 (1995)   DOI   ScienceOn
56 W. R. Bowen and F. Jenner, Dynamic Ultrafiltration Model For Charged Colloidal Dispersions - a Wigner-Seitz Cell Approach. Chem. Eng. Sci., 50, 1707-1736 (1995)   DOI   ScienceOn
57 P. Blanpain and M. Lalande, Investigation of Fouling Mechanisms Governing Permeate Flux in the Crossflow Microfiltration of Beer. Filtration Sep., 34, 1065-1069 (1997)   DOI   ScienceOn
58 S. Chellam and M. R. Wiesner, Particle back- transport and permeate flux behavior in crossflow membrane filters. Environ. Sci. Technol., 31, 819-824 (1997)   DOI   ScienceOn
59 M. H. Lojkine, R. W. Field, and J. A. Howell, Crossflow Microfiltration of Cell Suspensions: A Review of Models with Emphasis on Particle Size Effects. Transactions of the Institution of Chemical Engineers, 70 (1992)
60 C. A. Romero and R. H. Davis, Global-Model of Cross-Flow Microfiltration Based On Hydrodynamic Particle Diffusion. J. Membrane Sci., 39, 157-185 (1988)   DOI   ScienceOn
61 W. R Bowen, N. Hilal, R W. Lovitt, A. O. Sharif, and P. M. Williams, Atomic force microscope studies of membranes: Force measurement and imaging in electrolyte solutions. J. Membrane Sci., 126, 77-89 (1997)   DOI   ScienceOn
62 A. L. Zydney, Protein Separations Using Membrane Filtration - New Opportunities For Whey Fractionation. International Dairy Journal, 8, 243-250 (1998)   DOI   ScienceOn
63 P. Gagliardo, S. Adharn, R Trussell, and A. Olivieri, Water Repurification Via Reverse Osmosis. Desalination, 117, 73-78 (1998)   DOI   ScienceOn
64 E. M. Tracey and R. H. Davis, Protein Fouling of Track-Etched Polycarbonate Microfiltration Membranes. J. Colloid Inuerface Sci., 167, 104-116 (1994)   DOI   ScienceOn
65 S. Sethi and M. R. Wiesner, Modeling of Transient Permeate Flux in Cross-Flow Membrane Filtration Incorporating Multiple Particle Transport Mechanisms. J. Membrane Sci., 136, 191-205 (1997)   DOI   ScienceOn
66 M. Okazaki and S. Kimura, Scale Formation On Reverse-Osmosis Membranes. J. Chem. Eng. Jpn., 17, 145-151 (1984)   DOI   ScienceOn
67 E. S. Tarleton and R J. Wakeman, Understanding Flux Decline in Cross-Flow Microfiltration. 2. Effects of Process Parameters. Chem. Eng. Res. Des., 72, 431-440 (1994)
68 R. J. Peterson, Review: Composite reverse osmosis and nanofiltration membranes. J. Membrane Sci., 83, 81-150 (1993)   DOI   ScienceOn
69 S. Elmaleh and W. Naceur, Transport of Water Through an Inorganic Composite Membrane. J. Membrane Sci., 66, 227-234 (1992)   DOI   ScienceOn
70 L. H. Huang and M. T. Morrissey, Fouling of Membranes During Microfiltration of Surimi Wash Water - Roles of Pore Blocking and Surface Cake Formation. J. Membrane Sci., 144, 113-123 (1998)   DOI   ScienceOn
71 W. R. Bowen and F. Jenner, Theoretical descriptions of membrane filtration of colloids and fine particles: An assessment and review. Advances in Colloid and Interface Science, 56, 141-200 (1995)   DOI   ScienceOn
72 D. J. Carlsson, M. M. Dalcin, P. Black, and C. N. Lick, A Surface Spectroscopic Study of Membranes Fouled By Pulp Mill Effluent. J. Membrane Sci., 142, 1-11 (1998)   DOI   ScienceOn
73 D. Y. Kwon, S. Vigneswaran, H. H. Ngo, and H. S. Shin, An Enhancement of Critical Flux in Crossflow Microfiltration With a Pretreatment of Floating Medium Flocculator/Prefilter, Water Sci. Technol., 36, 267-274 (1997)   DOI   ScienceOn
74 A. S. Jonsson and B. Jonsson, Ultrafiltration of colloidal dispersions - A theoretical model of the concentration polarization phenomena. J. Colloid Interface Sci., 180, 504-518 (1996)   DOI   ScienceOn
75 M. R. Torres, A. J. Ramos, and E. Soriano, Ultrafiltration of Blood Proteins By Experimental Polyamide Membranes. Bioproc. Eng., 19, 213-215 (1998)   DOI   ScienceOn
76 D. Clifford, S. Subramonian, and T. J. Sorg, WaterTreatment Processes. 3. Removing Dissolved Inorganic Contaminants From Water. Environ. Sci. Technol., 20, 1072-1080 (1986)   DOI   ScienceOn
77 W. R. Bowen, A. Mongruel, and P. M. Williams, Prediction of the rate of cross-flow membrane ultrafiltration: A colloidal interaction approach. Chem. Eng. Sci., 51, 4321-4333 (1996)   DOI   ScienceOn
78 W. B. Russell, D. A Saville, and W. R Schowalter, Colloidal Dispersions. Cambridge (1989)
79 P. Bacchin, P. Aimar, and V. Sanchez, Model For Colloidal Fouling of Membranes. AIChE J., 41, 368-376 (1995)   DOI   ScienceOn
80 R. J. Lahiere and K. P. Goodboy, Ceramic Membrane Treatment of Petrochemical Waste-Water. Environ. Progr., 12, 86-96 (1993)   DOI   ScienceOn
81 J. M. Jackson and D. Landolt, About Mechanism of Formation of Iron Hydroxide Fouling Layers On Reverse-Osmosis Membranes. Desalination, 12, 361-378 (1973)   DOI   ScienceOn
82 H. Ohya, J. J. Kim, A. Chinen, M. Aihara, S. I. Semenova, Y. Negishi, O. Mori, and M. Yasuda, Effects of Pore Size On Separation Mechanisms of Microfiltration of Oily Water, Using Porous Glass Tubular Membrane. J. Membrane Sci., 145, 1-14 (1998)   DOI   ScienceOn
83 J. G. Wijmans, S. Nakao, and C. A. Smolders, Flux Limitation in Ultrafiltration - Osmotic-Pressure Model and Gel Layer Model. J. Membrane Sci., 20, 115-124 (1984)   DOI   ScienceOn
84 R. M. McDonogh, A. G. Fane, and C. J. D. Fell, Influence of Polydispersity On the Hydraulic Behaviour of Colloidal Fouling Layers On Membranes - Perturbations On the Behaviour of the Ideal Colloidal Layer. Colloids Surf. A-Physicochem. Eng. Asp., 138, 231-244 (1998)   DOI   ScienceOn
85 J. Cakl and P. Mikulasek, Flux and Fouling in the Cross-Flow Ceramic Membrane Microfiltration of Polymer Colloids. Sep. Sci. Technol., 30, 3663-3680 (1995)   DOI   ScienceOn
86 M. Nystrom, L. Kaipia, and S. Luque, Fouling and Retention of Nanofiltration Membranes. J. Membrane Sci., 98, 249-262 (1995)   DOI   ScienceOn
87 C. Legallais, E. Dore, L. Ploux, M. Fauchet, and M. Y. Jaffrin, A Scintigraphic Study of Ldl-Cholesterol Irreversible Trapping in a Plasma Fractionation Membrane. Chem. Eng. Sci., 53, 2623 ff. (1998)   DOI   ScienceOn
88 F. Meyer, I. Gehmlich, R. Guthke, A. Gorak, and W. A. Knorre, Analysis and Simulation of Complex Interactions During Dynamic Microfiltration of Escherichia Coli Suspensions. Biotechnol. Bioeng., 59, 189-202 (1998)   DOI   ScienceOn
89 V. L. Vilker, C. K. Colton, and K. A. Smith, Concentration polarization in protein ultrafiltration. AIChE J, 27, 632 (1981)   DOI   ScienceOn
90 P. Harmant and P. Aimar, Coagulation of Colloids in a Boundary Layer During Cross-Flow Filtration. Colloids Surf. A-Physicochem. Eng. Asp., 138, 217-230 (1998)   DOI   ScienceOn
91 S. Chellam, J. G. Jacangelo, and T. P. Bonacquisti, Modeling and Experimental Verification of Pilot- Scale Hollow Fiber, Direct Flow Microfiltration With Periodic Backwashing. Environ. Sci. Technol., 32, 75-81 (1998)   DOI   ScienceOn
92 K. H. Ahn, H. Y. Cha, I. T. Yeom, and K. G. Song, Application of Nanofiltration For Recycling of Paper Regeneration Wastewater and Characterization of Filtration Resistance. Desalination, 119, 169-176 (1998)   DOI   ScienceOn
93 S. S. Madaeni, Ultrafiltration of Very Dilute Colloidal Mixtures. Colloids Surf. A-Physicochem. Eng. Asp., 131, 109-118 (1998)   DOI   ScienceOn
94 J. M. K. Timmer, H. C. Vanderhorst, and J. P. Labbe, Cross-Flow Microfiltration of Beta-Lactoglobulin Solutions and the Influence of Silicates On the Flow Resistance. J. Membrane Sci., 136, 41-56 (1997)   DOI   ScienceOn
95 M. Manttari, J. Nuortilajokinen, and M. Nystrom, Influence of Filtration Conditions On the Performance of Nf Membranes in the Filtration of Paper Mill Total Effluent. J. Membrane Sci., 137, 187-199 (1997)   DOI   ScienceOn
96 V. Lahoussineturcaud, M. R. Wiesner, and J. Y. Bottero, Fouling in Tangential-Flow Ultrafiltration -the Effect of Colloid Size and Coagulation Pretreatment. J. Membrane Sci., 52, 173-190 (1990)   DOI   ScienceOn
97 C. Hosten, Cake Filtration-Rate Equations - a Review of Classical and Modem Approaches. Minerals Engineering, 6, 775-783 (1993)   DOI   ScienceOn
98 R. H. Davis, Modeling of Fouling of Cross-Flow Microfiltration Membranes. Separation and Purification Methods, 21, 75-126 (1992)   DOI   ScienceOn
99 O. Kutowy, W. L. Thayer, J. Tigner, S. Sourirajan, and G. K. Dhawan, Tubular Cellulose-Acetate Reverse-Osmosis Membranes For Treatment of Oily Wastewaters. Ind. Eng. Chem. Prod. Res. Dev., 20, 354-361 (1981)   DOI
100 L. Gourley, M. Britten, S. F. Gauthier, and Y. Pouliot, Characterization of Adsorptive Fouling On Ultrafiltration Membranes By Peptides Mixtures Using Contact-Angle Measurements. J. Membrane Sci., 97, 283-289 (1994)   DOI   ScienceOn
101 G. Belfort, R. H. Davis, and A. L. Zydney, The Behavior of Suspensions and Macromolecular Solutions in Crossflow Microfiltration. J Membrane Sci., 96, 1-58 (1994)   DOI   ScienceOn
102 C. A. Romero and R. H. Davis, Transient Model of Cross-Flow Microfiltration. Chem. Eng. Sci., 45, 13-25 (1990)   DOI   ScienceOn
103 G. Belfort, Artificial Particulate Fouling of HyperFiltration Membranes. 4. Dynamic Protection From Fouling. Desalination, 34, 159-169 (1980)   DOI   ScienceOn
104 S. Bhattacharjee, A. Sharma, and P. K. Bhattacharyya, A unified model for flux prediction during batch cell ultrafiltration. J. Membrane Sci., 111, 243-258 (1996)   DOI   ScienceOn
105 M. Elimelech and S. Bhattacharjee, A Novel Approach For Modeling Concentration Polarization in Crossflow Membrane Filtration Based On the Equivalence of Osmotic Pressure Model and Filtration Theory. J. Membrane Sci., 145, 223-241 (1998)   DOI   ScienceOn
106 R. M. McDonogh, C. J. D. Fell, and A. G. Fane, Charge effects in the cross-flow filtration of colloids and particulates. J. Membrane Sci., 43, 69-85 (1989)   DOI   ScienceOn
107 Z. Amjad, Applications of Antiscalants to Control Calcium-Sulfate Scaling in Reverse-Osmosis Systems. Desalination, 54, 263-276 (1985)   DOI   ScienceOn
108 F. M. Tiller, J. R. Crump, and F. Ville, A Revised Approach to the Theory of Cake Filtration. in International Symposium on Fine Particles Processing. Las Vegas, Nevada: American Institute of Mining (1980)
109 A. B. Koltuniewicz, R W. Field, and T. C. Arnot, Cross-Flow and Dead-End Microfiltration of OilyWater Emulsion. 1. Experimental-Study and Analysis of Flux Decline. J.. Membrane Sci., 102, 193207 (1995)
110 X. Zhu and M. Elimelech, Fouling of Reverse Osmosis Membranes by Aluminium Oxide Colloids. Journal of Environmental Engineering, 121, 884-892 (1995)   DOI   ScienceOn
111 R W. Field, D. Wu, J. A. Howell, and B. B. Gupta, Critical Flux Concept For Microfiltration Fouling. J. Membrane Sci., 100, 259-272 (1995)   DOI   ScienceOn
112 H. Li, A. G. Fane, H. G. L. Coster, and S. Vigneswaran, Direct Observation of Particle Deposition On the Membrane Surface During Crossflow Microfiltration. J. Membrane Sci., 149, 83-97 (1998)   DOI   ScienceOn
113 D. Y. Kwon and S. Vigneswaran, Influence of particle size and surface charge on critical flux of crossflow microfiltration. Water Sci. Technol., 38, 481-488 (1998)   DOI   ScienceOn
114 R. H. Davis and D. T. Leighton, Shear-Induced Transport of a Particle Layer Along a Porous Wall. Chem. Eng. Sci., 42, 275-281 (1987)   DOI   ScienceOn
115 L. Song and M. Elime1ech, Theory of concentration polarization in crossflow filtration. Journal of Chemical Society Faraday Transactions, 91, 3389-3398 (1995)   DOI   ScienceOn
116 E. H. Bouhabila, R. Benaim, and H. Buisson, Microfiltration of Activated Sludge Using Submerged Membrane With Air Bubbling (Application to Wastewater Treatment). Desalination, 118, 315-322 (1998)   DOI   ScienceOn
117 R. M. McDonogh, C. J. D. Fell, and A. G. Fane, Surface charge and permeability in the ultrafiltration of non-flocculating colloids. J. Membrane Sci., 21, 285-294 (1984)   DOI   ScienceOn
118 J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics. Dordrect: Kluwer (1991)
119 R. S. Faibish, M. Elimelech, and Y. Cohen, Effect of Interparticle Electrostatic Double Layer Interactions On Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions - an Experimental Investigation. J. Colloid Interface Sci., 204, 77-86 (1998)   DOI   ScienceOn
120 K. J. Kim, A. G. Fane, C. J. D. Fell, and D. C. Joy, Fouling Mechanisms of Membranes During Protein Ultrafiltration. J. Membrane Sci., 68, 79-91 (1992)   DOI   ScienceOn
121 J. G. Wijmans, S. Nakao, J. W. A. Vandenberg, F. R. Troelstra, and C. A. Smolders, Hydrodynamic Resistance of Concentration Polarization Boundary- Layers in Ultrafiltration. J. Membrane Sci., 22, 117-135 (1985)   DOI   ScienceOn
122 Y. Shimizu, K. Uryu, Y. Okuno, and A. Watanabe, Cross-flow microfiltration of activated sludge using submerged membrane with air bubbling. J. Ferment. Bioeng., 81, 55-60 (1996)   DOI   ScienceOn
123 W. R. Bowen and P. M. Williams, Dynamic ultrafiltration model for proteins: A colloidal interaction approach. Biotechnology and Bioengineering, 50, 125-135 (1996)   DOI   PUBMED   ScienceOn
124 V. Lahoussineturcaud, M. R. Wiesner, J. Y. Bottero, and J. Mallevialle, Coagulation Pretreatment For Ultrafiltration of a Surface-Water. Journal American Water Works Association, 82, 76-81 (1990)
125 W. Xu, A. Nikolov, and D. T. Wasan, J. Colloid Interface Sci., 197, 160 (1998)   DOI   PUBMED   ScienceOn
126 R. D. Cohen and R. F. Probstein, Colloidal Fouling of Reverse Osmosis Membranes. J. Colloid Interface Sci., 114, 194-207 (1986)   DOI   ScienceOn
127 R. J. Wakeman and G. Akay, Flux Decay and Rejection During Micro-Filtration and Ultra-filtration of Hydrophobically-Modified Water-Soluble Polymers. J. Membrane Sci., 91, 145-152 (1994)   DOI   ScienceOn
128 S. Elmaleh and L. Abdelmoumni, Experimental test to evaluate performance of an anaerobic reactor provided with an external membrane unit. Water Sci. Technol., 38, 385-392 (1998)   DOI   ScienceOn
129 V. Chen, Performance of Partially Permeable Microfiltration Membranes Under Low Fouling Conditions. J. Membrane Sci., 147,265-278 (1998)   DOI   ScienceOn
130 D. X. Wu, J. A. Howell, and R W. Field, Critical flux measurement for model colloids. J. Membrane Sci., 152, 89-98 (1999)   DOI   ScienceOn
131 W. R. Bowen and A. O. Sharif, Hydrodynamic and Colloidal Interactions Effects On the Rejection of a Particle Larger Than a Pore in Microfiltration and Ultrafiltration Membranes. Chem. Eng. Sci., 53, 879-890 (1998)   DOI   ScienceOn
132 J. Hermia, Constant Pressure Blocking Filtration Laws-Application to Power-Law Non-Newtonian Fluids. Transactions of the Institution of Chemical Engineers, 60, 183-187 (1982)
133 A. Braghetta and F. A. DiGiano, Organic Solute Association with Nanofiltration Membrane Surface: Influence of pH and Ionic Strength on Membrane Permeability. in American Water Works Association Annual Conference. New York, NY. (1994)
134 E. S. Tarleton and R. J. Wakeman, Understanding Flux Decline in Cross-Flow Microfiltration. 3. Effects of Membrane Morphology. Chem. Eng. Res. Des., 72, 521-529 (1994)
135 W. Zhang, B. G. Park, Y. K. Chang, H. N. Chang, X. J. Yu, and Q. Yuan, Factors Affecting Membrane Fouling in Filtration of Saccharomyces Cerevisiae in an Internal Ceramic Filter Bioreactor. Bioproc. Eng., 18, 317-322 (1998)   DOI
136 G. B. Van den Berg and C. A. Smolders, Flux decline in ultrafiltration processes. Desalination, 77, 101 (1990)
137 G. K. Batchelor, Sedimentation in a dilute dispersion of spheres. Journal of Fluid Mechanics, 52, 245-268 (1972)   DOI
138 R. W. Field and P. Aimar, Ideal Limiting Fluxes in Ultrafiltration - Comparison of Various Theoretical Relationships. J. Membrane Sci., 80, 107-115 (1993)   DOI   ScienceOn
139 E. Tardieu, A. Grasmick, V. Geaugey, and J. Manem, Hydrodynamic Control of Bioparticle Deposition in a Mbr Applied to Wastewater Treatment. J. Membrane Sci., 147, 1-12 (1998)   DOI   ScienceOn
140 I. H. Huisman, D. Elzo, E. Middelink, and A. C. Tragardh, Properties of the cake layer formed during crossflow microfiltration. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 138, 265-281 (1998)   DOI   ScienceOn
141 E. S. Tarleton and R. J. Wakeman, Understanding Flux Decline in Cross-Flow Microfiltration. 1. Effects of Particle and Pore-Size. Chem. Eng. Res. Des., 71, 399-410 (1993)
142 L. Song and M. Elimelech, Particle Deposition onto a Permeable Surface in Laminar Flow. J. Colloid Interface Sci., 173, 165-180 (1995)   DOI   ScienceOn
143 J. Happel, AIChE J., 4, 197 (1958)   DOI
144 L. Vera, R. Villarroellopez, S. Delgado, and S. Elmaleh, Cross-Flow Microfiltration of Biologically Treated Wastewater. Desalination, 114, 65-75 (1997)   DOI   ScienceOn
145 P. Schmitz, D. Houi, and B. Wandelt, Hydrodynamic Aspects of Cross-Flow Microfiltration Analysis of Particle Deposition At the MembraneSurface. J. Membrane Sci., 71, 29-40 (1992)   DOI   ScienceOn
146 L. F. Fu and B. A. Dempsey, Modeling the Effect of Particle Size and Charge On the Structure of the Filter Cake in Ultrafiltration. J. Membrane Sci., 149, 221-240 (1998)   DOI   ScienceOn
147 N. D. Denkov and D. N. Petsev, Physica A, 183, 462 (1992)   DOI   ScienceOn
148 W. Doyen, Latest Developments in Ultrafiltration For Large-Scale Drinking Water Applications. Desalination, 113, 165-177 (1997)   DOI   ScienceOn
149 J. Lindau, A. S. Jonsson, and A. Bottino, Flux Reduction of Ultrafiltration Membranes With Different Cut-Off Due to Adsorption of a Low-MolecularWeight Hydrophobic Solute-Correlation Between Flux Decline and Pore Size. J. Membrane Sci., 149, 11-20 (1998)   DOI   ScienceOn
150 A. Maartens, P. Swart, and E. P. Jacobs, Humic Membrane Foulants in Natural Brown Water Characterization and Removal. Desalination, 115, 215-227 (1998)   DOI   ScienceOn
151 R. F. Boyd and A. L. Zydney, Analysis of Protein Fouling During Ultrafiltration Using a Two-Layer Membrane Model. Biotechnol. Bioeng., 59, 451-460 (1998)   DOI   ScienceOn
152 D. R. Trettin and M. R. Doshi, Limiting Flux in Ultrafiltration of Macromolecular Solutions. Chem. Eng. Commun., 4, 507-522 (1980)   DOI   ScienceOn