• Title/Summary/Keyword: fos genes

Search Result 81, Processing Time 0.03 seconds

DNA Methylation in Brain and Liver Tissues of Mice Infected with Scrapie Agent (스크래피에 감염된 마우스의 뇌 및 간조직에서의 DNA Methylation)

  • Choi, E.K.;Uyeno, S.;Ono, T.;Carp, R.I.;Kim, Y.S.
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 1998
  • DNA methylation degree in the several murine brain and liver genes of different ages and after scrapie infection have been examined by using methylation-sensitive restriction endonuclease digestion. We found that the methylation of c-fos and c-myc in the brain and liver was increased during the late fetal to one month postnatal developmental periods. However, those of the SGP-2, $S100{\beta}$, APP950, PrP, and APLP1 genes were decreased at the same periods. The comparison of the DNA methylation patterns between scrapie infected brains and controls demonstrated there is no significant difference in methylation degree of scrapie-infected brains. These observations indicate that DNA methylation might be importantly related to the aging process. The scrapie-infected murine brain was not significantly developed more senescent than the same age-controls did.

  • PDF

The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Sooyeon;Heo, Jubi;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.964-974
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. Methods: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. Results: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. Conclusion: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

Protective Effect of HP08-0111 on Ligature-Induced Periodontitis

  • Park, Young-Ran;Cho, Hyoung-Kwon;Soh, Yun-Jo
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.145-151
    • /
    • 2010
  • Periodontitis is an inflammatory disorder of the periodontium and is characterized by destruction of the tooth supporting tissues, mediated by the upregulation of synthesis and release of a variety of pro-inflammatory factors. Inflammatory cytokines and prostaglandins upregulate RANKL and its subsequent binding to RANK stimulates osteoclast formation, resorption activity, and survival. In our present study, we investigated the effects of HP08-0111, composed of Coptis japonica (Thunb.) Makino, vitamin C and vitamin E, upon inflammatory responses, osteoclastogenesis and alveolar bone loss. HP08-0111 decreased the expression of IL-1$\beta$ and COX2 on LPS-induced RAW 264.7 cells and inhibited osteoclast-specific genes such as c-Fos, MMP-9, and TRAP. HP08-0111 also exhibited protective effects against alveolar bone loss in rats with ligature-induced periodontitis. Our results suggest that HP08-0111 is potentially an important therapeutic tool for the treatment of disorders associated with bone loss such as periodontitis.

Inhibitory Effect of Paeoniae Radix Alba Ethanol Extract on Osteoclast Differentiation and Formation (백작약 에탄올 추출물의 파골세포 분화 및 생성 억제 작용)

  • Park, Bora;Park, Geun Ha;Gu, Dong Ryun;Ko, Wonmin;Kim, Youn-Chul;Lee, Seoung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • Bone destruction is a pathological symptom of some chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis. Inflammation-induced bone loss of these diseases results from increased number and activity of osteoclasts. Paeoniae Radix Alba has been used in korean traditional medicine to treat disease including inflammation, gynecopathy and various pain. However, these effects have not been tested on osteoclasts, the bone resorbing cells that regulate bone metabolism. Here, we investigated the effects of Paeoniae Radix Alba ethanol extract (PRAE) on receptor activator of nuclear factor-kappa B ligand (RANKL)-mediated osteoclast differentiation and formation. Osteoclast differentiation and formation were measured by tartrate resistant acidic phosphatase (TRAP) staining and TRAP solution assay. The treatment of PRAE on bone marrow derived macrophages (BMMs), which is known as osteoclast precursor cells, inhibited osteoclast differentiation and formation in a dose-dependent manner. In addition, the expression of osteoclast differentiation marker genes was suppressed by PRAE treatment. This inhibitory effect of PRAE resulted from significant repression of c-Fos expression, and subsequent reduction of NFATc1 expression which was previously reported as a master transcription factor for osteoclastogenesis in vitro and in vivo. These results demonstrate that PRAE negatively regulates osteoclast differentiation and formation and suggest that PRAE can be used as a potent preventive or therapeutic candidate for various bone diseases, such as postmenopausal osteoporosis, periodontitis and rheumatoid arthritis.

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Effect of Spatholobus Suberectus Extract (SSE) on RANKL-treated RAW264.7 and LPS-induced Bone Loss (계혈등 에탄올 추출물의 RANKL 처리 RAW264.7 세포의 분화와 염증성 골 손실에 미치는 영향)

  • Dae Joong Lee;Jong Hyun Hwang;Do Hwi Park;Ki Sung Kang;Chan Yong Jeon;Gwi Seo Hwang
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.6
    • /
    • pp.1134-1148
    • /
    • 2022
  • Purpose: We evaluated whether Spatholobus suberectus extract (SSE) can be used as a means of preventing and treating osteoporosis by measuring its effect on osteoclast differentiation, gene expression, and bone resorption. Methods: SSE was used to examine the effect on RAW 264.7 cells stimulated with RANKL to induce bone resorption. The inhibitory effect of TRAP formation and the expression of the bone resorption factors TRAP, cathepsin K, and MMP-9 during differentiation were measured. The effects on the differentiation-related factors NFATc and TRAIL and on the expression of OC-STAMP, DC-STAMP, ATP6v0d2, MITF, c-Fos, and inflammation-related factors were also evaluated. The effect on bone resorption was evaluated by culturing RANKL-treated osteoclasts on artificial bone fragments and observing the resulting resorption traces. The effect on bone damage in experimental animals was also measured. Results: SSE inhibited the differentiation of RANKL-stimulated osteoclasts into osteoclasts and suppressed the expression of cathepsin K, TRAP, MMP-9, NFATc1, TRAIL, MITF, OC-STAMP, DC-STAMP, ATP6v0d2, and c-Fos genes. Bone pore formation due to osteoclast action was also inhibited, and LPS-induced bone loss was suppressed in animal experiments. Conclusions: SSE could be useful for the prevention or treatment of osteoporosis by inhibiting osteoclast differentiation and bone resorption and suppressing bone loss induced in experimental animals. However, studies of larger populations are required.

Comparison of gene expression profiles of human dental pulp cells treated with mineral trioxide aggregate and calcium hydroxide (인간치수세포에 Mineral Trioxide Aggregate와 수산화칼슘 제재 적용 시 유전자 발현 양상 비교)

  • Kim, Yong-Beom;Shon, Won-Jun;Lee, Woo-Cheol;Kum, Kee-Yeon;Baek, Seung-Ho;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.397-408
    • /
    • 2011
  • Objectives: This study investigated changes in gene expressions concerning of differentiation, proliferation, mineralization and inflammation using Human-8 expression bead arrays when white Mineral Trioxide Aggregate and calcium hydroxide-containing cement were applied in vitro to human dental pulp cells (HDPCs). Materials and Methods: wMTA (white ProRoot MTA, Dentsply) and Dycal (Dentsply Caulk) in a Teflon tube (inner diameter 10 mm, height 1 mm) were applied to HDPCs. Empty tube-applied HDPCs were used as negative control. Total RNA was extracted at 3, 6, 9 and 24 hr after wMTA and Dycal application. The results of microarray were confirmed by reverse transcriptase polymerase chain reaction. Results: Out of the 24,546 genes, 43 genes (e.g., BMP2, FOSB, THBS1, EDN1, IL11, COL10A1, TUFT1, HMOX1) were up-regulated greater than two-fold and 25 genes (e.g., SMAD6, TIMP2, DCN, SOCS2, CEBPD, KIAA1199) were down-regulated below 50% by wMTA. Two hundred thirty nine genes (e.g., BMP2, BMP6, SMAD6, IL11, FOS, VEGFA, PlGF, HMOX1, SOCS2, CEBPD, KIAA1199) were up-regulated greater than two-fold and 358 genes (e.g., EDN1, FGF) were down-regulated below 50% by Dycal. Conclusions: Both wMTA and Dycal induced changes in gene expressions related with differentiation and proliferation of pulp cells. wMTA induced changes in gene expressions related with mineralization, and Dycal induced those related with angiogenesis. The genes related with inflammation were more expressed by Dycal than by wMTA. It was confirmed that both wMTA and Dycal were able to induce gene expression changes concerned with the pulp repair in different ways.

Effect of Banhahoobak-tang (Banxiahoupo-tang) Extract (BHTe) on Psychological Stress (반하후박탕(半夏厚朴湯)이 생쥐의 심리적 스트레스에 미치는 영향과 유전자 분석)

  • Choi, Geum-Ae;Cho, Su-In;Kim, Kyeong-Su;Choi, Chang-Won;Wei, Tung-Shuen;Yang, Seung-Joung;Park, Soo-Yeon;Kim, Kyeong-Ok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.26 no.2
    • /
    • pp.117-130
    • /
    • 2015
  • Objectives: Banhahoobak-tang has been used to treat plum-pit qi, chest and hypochondriac distension, moist or greasy tongue coat, and wiry slow or wiry slippery pulse. It might be used to control coughing and vomiting. We observed that Banhahoobak-tang extract (BHTe) had anti-psychological stress effect. The objective of this study was to determine the effect of BHTe on restoring the transcriptional regulation of genes related to psychological stress. Methods: After giving psychological stress to mice, BHTe was orally administered at 100 mg/kg/day for five days. After extracting whole brain tissue from the mice, the gene expression changes were determined by microarray. Transcription factor binding site (TFBS) analysis showed up- and down-regulated genes related to psychological stress were protected by BHTe and segregated according to the structure of TFBS. We performed text based Pubmed search to select significant target genes involved in psychological stress affected by BHTe. Results: 1. Serum corticosterone level was decreased in the BHTe administered group, although the psychological stress was increased. 2. The BHTe administered group had no significant change in noradrenaline content in brain tissue, but the psychological stress group had decreased level. 3. The BHTe administered group had increased time of staying at open-arm than the psychological stress group. 4. Microarray revealed that TANK and RARA genes were up-regulated genes while AES, CDC42, FOS, NCL, and PVR were down-regulated genes by psychological stress but restored by BHTe.

Gentianae Macrophyllae Radix Water Extract Inhibits RANKL-Induced Osteoclastogenesis and Osteoclast Specific Genes (진교의 파골세포 분화 및 골 흡수 유전자 억제기전 연구)

  • Yang, Kyujin;Kim, Jae Hyun;Kim, Minsun;Ryu, Gwang-hyun;Moon, Jin-Ho;Lee, Hye-In;Jung, Hyuk-Sang;Sohn, Youngjoo
    • Korean Journal of Acupuncture
    • /
    • v.37 no.2
    • /
    • pp.63-75
    • /
    • 2020
  • Objectives : Osteoporosis is the most common bone disease and osteoporosis fracture is the leading cause of decreased life. Bisphosphonate and selective estrogen receptor modulators are the best choice of treatment for osteoporosis. However, when used for a long time, they increase the probability of side effect such as osteonecrosis of the jaw. Thus, it is crucial to develop alternative medicine to treat osteoporosis. Gentianae Macrophyllae Radix, a herbal medicine, is mainly to treat rheumatoid arthritis. However, the effect of the water extract of Gentianae Macrophyllae Radix (w-GM) on osteoporosis has not been investigated. Thus, we examine whether w-GM can inhibit osteoclast differentiation and bone resorption on receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-treated RAW 264.7 cells. In this study, RAW 264.7 cells were used as an osteoclast differentiation model by treating them with RANKL. Methods : RAW 264.7 cells were used to determine the effect of w-GM on osteoclast differentiation and bone resorption. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity and pit formation assay were examined. In addition, protein expressions were measured by western blot and mRNA expressions were analyzed by reverse transcription polymerase chain reaction. Results : Treatment with w-GM inhibited the number of TRAP-positive cells, TRAP activity and pit area. In addition, w-GM decreased protein expression such as mitogen-activated protein kinase, NF-κB, c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). It also inhibited the mRNA levels such as c-Fos, NFATc1, TRAP, NF-κB, calcitonin receptor and cathepsin K in RANKL-treated RAW 264.7 cells. Conclusions : These results suggest that w-GM has inhibitory effects via osteoclast differentiation, thus it could be a new medication for osteoporosis.

The Effect of Ampelopsis japonica (Thunb.) Makino on Osteoclastogenesis and Expression of Osteoclast-Related Gene (백렴(白蘞)의 파골세포 분화 및 관련 유전자 발현 억제에 미치는 영향)

  • Hongsik Kim;Sumin Lee;Minsun Kim;Jae-Hyun Kim;Yejin Kang;Seoung Jun Kwon;Youngwoo Nam;Seungwoo Yoo;Hong-Seok Choi;SeonJin Huh;Youngjoo Sohn;Hyuk-Sang Jung
    • The Korea Journal of Herbology
    • /
    • v.38 no.5
    • /
    • pp.9-19
    • /
    • 2023
  • Objectives : Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density and increased risk of fractures. Bisphosphonates and selective estrogen receptors, which are bone resorption inhibitors that are currently widely used as osteoporosis treatments, show serious side effects when administered for a long time. Research on bone resorption inhibitors that complement the problems of existing treatments is needed. The purpose of this study was to investigate the effect of inhibiting osteoclast differentiation and activity on the tuberous root of Ampelopsis japonica (Thunb.) Makino (AM). Methods : After extracting AM using distilled water and ethanol, the inhibitory effects of the two solvents on osteoclast differentiation were compared using the RANKL-induced in vitro experimental model and the TRAP assay kit. The impact of AM on bone resorption was investigated through the pit formation assay, and its effect on F-actin formation was assessed through fluorescent staining. Additionally, protein and mRNA expression levels of osteoclast differentiation markers (NFATc1, c-Fos, TRAP and ATP6v0d2) and resorption markers (MMP-9, CTK, and CA2) were analyzed via western blot and RT-PCR. Results : AM treatment significantly decreased the number of TRAP-positive cells and pit formation area. Furthermore, AM suppressed both the protein and mRNA expression of NFATc1 and c-Fos, key transcription factors involved in osteoclast differentiation and it downregulated the expression of osteoclast-associated genes such as TRAP, CTK, MMP-9, CA2, and ATP6v0d2. Conclusions : These results suggest that AM can inhibit bone resorption and osteoclast differentiation, indicating its potential for use in the treatment and prevention of osteoporosis.