• Title/Summary/Keyword: forward converter

Search Result 287, Processing Time 0.024 seconds

A Study on the High-Efficiency. High-Power-Factor AC/DC Boost Converter Using Energy Recovery (에너지 회생 스너버를 적용한 고효률, 고역률 AC/DC Boost 컨버터에 관한 연구)

  • Ryu, Chang-Gyu;Kim, Yong;Bae, Jin-Yong;Baek, Soo-Hyun;Choi, Geun-Soo;Gye, Sang-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.160-163
    • /
    • 2004
  • A passive lossless turn-on/turn-off snubber network is proposed for the boost PWM converter. Previous AC/DC PFC Boost Converter perceives feed forward signal of output for average current-mode control. Previous Boost Convertor, the Quantity of input current will be decreased by the decrease of output current in light load, and also Power factor comes to be decreased. Also the efficiency of converter will be decreased by the decrease of power factor. The proposed converter presents the good PFC, low line current harmonic distortions and tight output voltage regulations using energy recovery circuit. All of the semiconductor devices in the converter are turned on under exact or near zero voltage switching(ZVS). No additional voltage and current stresses on the main switch and main diode occur. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

A study on the haromnic attenuation of the BF Converter (BF 컨버터의 고조파 감쇠에 관한 연구)

  • 최태섭;안인수;임승하;사공석진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.8-15
    • /
    • 2000
  • In this paper, we realize the active PFC(Power Factor Correction) system of BF(Boost Forward) converter with PWM-PFM(Pulse Width Modulation-Pulse Frequency Modulation) control technique to control DC output voltage, to remove the noise like harmonics at output voltage, and to control the input current with sinusoidal wave synchronized by the source voltage.To achieve the desired load voltage and improved PFC, we first implement current shaping control at the inverting stage and make the converted output DC voltage with forward converter. After making the ratio of output voltage to current as 50V/1A and the duty ratio greater than 0.5. When input voltage is 30V and boost inductance is 1.1mH. we control the voltage changing rate according to the variation of load resistance using a PWM-PFM control technique. And finally we prove experimentally, we attenuated its harmonics and improved PF up to 0.96 using the current shaping technique.

  • PDF

Efficient Control Method of ZVS Full-bridge PWM Converter with Pulse Load Current (펄스형 부하에서 ZVS Full-bridge PWM 컨버터의 효율 증대를 위한 제어 방법)

  • 김정원
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.404-408
    • /
    • 2000
  • The novel control method of ZVS Full-bridge PWM converter with pulse load current is proposed. This new control method can reduce the switching loss of switches during no load condition. Moreover by using feed-forward load current information this method can obtain better transient dynamics compared to the system with only linear feedback control.

  • PDF

Resinant DC-DC Converter with Constant Switching frequency (스위칭 주파수가 일정한 공진형 DC-DC코버어터)

  • 이윤종;김희준;안태영;박효식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.3
    • /
    • pp.266-274
    • /
    • 1991
  • This paper proposed the resonant DC-DC converter with constant switching frequency. Its output is controlled by the auxiliary switch which is attached in conventional MRC circuits. The average output voltage is equal to the average voltage of the auxiliary switch. If the on time of the auxiliary switch is short, output voltage is decreased. Because of using the multi resonant method, the power loss from the parasitic elements can be decreased. Experimental performance of DF ZVS Forward MRC topology with switching frequency of 1MHz is presented.

Interleaved Active-Clamp ZVS Forward Converter (인터리브 능동 클램프모드 영전압 스위칭 포워드 컨버터)

  • Kim, Shin-Woo;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2201-2202
    • /
    • 2006
  • In this paper, we designed high performance, high quality and high density switch mode power supply for precision electronics, and communication equipments. For this, we used two parallel DC-DC converters, which have opposite phases, to support proper high performance and high quality power. To reduce switching losses and make high switching frequency, active-clamp and ZVS technique were employed in each converter.

  • PDF

Interleaved Active-Clamp ZVS Forward Converter (인터리브 능동 클램프모드 영전압 스위칭 포워드 컨버터)

  • Kim, Shin-Woo;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.569-570
    • /
    • 2006
  • In this paper, we designed high performance, high quality and high density switch mode power supply for precision electronics, and communication equipments. For this, we used two parallel DC-DC converters, which have opposite phases, to support proper high performance and high quality power. To reduce switching losses and make high switching frequency, active-clamp and ZVS technique were employed in each converter.

  • PDF

Multi-bit Sigma-Delta Modulator for Low Distortion and High-Speed Operation

  • Kim, Yi-Gyeong;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.835-837
    • /
    • 2007
  • A multi-bit sigma-delta modulator architecture is described for low-distortion performance and a high-speed operation. The proposed architecture uses both a delayed code and a delayed differential code of analog-to-digital converter in the feedback path, thereby suppressing signal components in the integrators and relaxing the timing requirement of the analog-to-digital converter and the scrambler logic. Implemented by a 0.13 ${\mu}m$ CMOS process, the sigma-delta modulator achieves high linearity. The measured spurious-free dynamic range is 89.1 dB for -6 dBFS input signal.

  • PDF

Input Series-Output Parallel Connected Converter Configuration for High Voltage Power Conversion Applications

  • Kim, Jung-Won;You, J.S.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.201-205
    • /
    • 1998
  • In this paper, the charge control with the input voltage feed forward is proposed for the input series-output parallel connected converter configuration for high voltage power conversion applications. This control scheme accomplishes the output current sharing for the output-parallel connected modules as well as the input voltage sharing for the input-series connected modules for all operating conditions including the transients. It also offers the robustness for the component value mismatches among the modules.

  • PDF

Interleaved Active-Clamp ZVS Forward Converter (인터리브 능동 클램프모드 영전압 스위칭 포워드 컨버터)

  • Kim, Shin-Woo;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1235-1236
    • /
    • 2006
  • In this paper, we designed high performance, high quality and high density switch mode power supply for precision electronics, and communication equipments. For this, we used two parallel DC-DC converters, which have opposite phases, to support proper high performance and high quality power. To reduce switching losses and make high switching frequency, active-clamp and ZVS technique were employed in each converter.

  • PDF

Interleaved Active-Clamp ZVS Forward Converter (인터리브 능동 클램프모드 5전압 스위칭 포워드 컨버터)

  • Kim, Shin-Woo;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1695-1696
    • /
    • 2006
  • In this paper, we designed high performance, high quality and high density switch mode power supply for precision electronics, and communication equipments. For this, we used two parallel DC-DC converters, which have opposite phases, to support proper high performance and high quality power. To reduce switching losses and make high switching frequency, active-clamp and ZVS technique were employed in each converter.

  • PDF