• Title/Summary/Keyword: fortified

Search Result 472, Processing Time 0.028 seconds

The Tissue Distribution of Lutein in Laying Hens Fed Lutein Fortified Chlorella and Production of Chicken Eggs Enriched with Lutein

  • An, Byoung-Ki;Jeon, Jin-Young;Kang, Chang-Won;Kim, Jin-Man;Hwang, Jae-Kwan
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.172-177
    • /
    • 2014
  • Two experiments were conducted to investigate the dietary effects of conventional or lutein fortified chlorella on lutein absorptions, the tissue distributions and the changes in lutein content of eggs in laying hens. In Exp 1, a total of one hundred and fifty, 70 wk-old Hy-Line brown layers were divided into three groups with five replicates and fed with each experiment diet (control diet, diet with 1% conventional chlorella or lutein fortified chlorella) for 2 wk, respectively. The egg production in groups fed diets containing both chlorella powders were higher than that of the control group (p<0.01). With chlorella supplementations, the yolk color significantly increased, although there were no significant differences in the eggshell qualities. The lutein contents of serum, liver and growing oocytes were greatly increased by feeding conventional or lutein fortified chlorella (p<0.01). In Exp. 2, a total of ninety 60 wk-old Hy-Line brown layers were assigned into three groups with three replicates per group (10 birds per replicate). The birds were fed with one of three experimental diets (0, 0.1 or 0.2% lutein fortified chlorella) for 2 wk, respectively. The egg production was not affected by dietary treatments. The egg weight in the group fed with diet containing 0.2% of lutein fortified chlorella was higher than that of the control (p<0.05). As the dietary chlorella levels increased, the daily egg mass linearly increased, although not significantly. The yolk colors in groups fed diets containing lutein fortified chlorella were dramatically increased as compared to the control (p<0.001). The lutein in chicken eggs significantly increased when fed with 0.2% of lutein fortified chlorella (p<0.01). These results suggested that the dietary lutein derived from chlorella was readily absorbed into the serum and absorbed by the liver with growing oocyte for commercial laying hens. Particularly, the lutein fortified chlorella was a valuable natural source for the production of lutein enriched chicken eggs.

Survey on the Patterns of Fortified Food Consumption and Intake of Vitamins and Minerals in Fortified Foods by Elementary School and Middle-School Students in Korea (우리나라 일부 초등학생과 중학생의 영양강화식품 섭취 실태 및 영양강화식품을 통한 비타민과 무기질 섭취량 조사)

  • Kim, Sun-Hyo
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.3
    • /
    • pp.295-306
    • /
    • 2011
  • This study was performed to investigate patterns of fortified food (FF) consumption and intake of vitamins and minerals from FFs among 577 Korean children (12.4 years of age) who attended elementary or middle school. FFs eaten by children as a snack were surveyed using the food record method during 3 days, including 2 week days and one weekend. As a result, 114 FF items were eaten by the children, and several kinds of nutrients such as vitamin A, D, E, B complex, C, calcium (Ca), iron (Fe), and zinc (Zn) were fortified in these foods. Ca-FFs (65.8%) were most frequently consumed, followed by vitamin C-FFs (33.4%) and vitamin D-FFs (33.3%). The number of FF items in each food group was the most in the milk group (n=24, 21.0%), followed by the beverage group (n=19, 16.7%), and the cookie/bread/cake group (n=17, 14.9%). Fortified nutrients in FFs were in various combinations, but the major combination patterns were Ca, Ca plus vitamins, Ca plus vitamins plus other minerals, and Ca plus other minerals. Daily mean intakes of vitamins and minerals from the FFs were 66-300% more than those of the recommended nutrient intake (RNI ) or adequate intake (AI) for most vitamins and minerals. Daily maximum intakes (95th percentile) of vitamins and minerals from FFs were 1-15 times the RNI or AI for most vitamins and minerals. Vitamin and mineral consumption ratios from each FF group were different according to the kind of fortified nutrient. For example, vitamin C was mostly eaten in fortified beverages (46-54%), and Fe was mostly eaten in fortified cookie/breads/cakes (87%). The above results show that FF consumption varied widely among the children, and that most of the children's foods were fortified with several vitamins and minerals without a common rule; thus, subjects risked over consuming vitamins and minerals by eating FFs. Therefore, practical guideline on FF use for children's optimal nutrition and health should be provided through nutrition education.

Stability of Immunoglobulin G(IgG) by Heat Treatment (면역단백질 G(IgG)의 열처리에 대한 안정성)

  • 박종대;손동화;정관섭
    • Food Science and Preservation
    • /
    • v.10 no.2
    • /
    • pp.236-240
    • /
    • 2003
  • This study was carried out to obtain fundamental data when developing new colostrum component fortified milk products. Residual immunoglobulin G (IgG) activities of both IgG fortified milk products under different pasteurization conditions and colostrum fortified milk powder products under different dissolving temperatures were measured. In the study, residual IgG activities of raw milk and IgG (50 mg and 250 mg) fortified milk products were sharply reduced upon increasing the temperature of heat treatment. After the low temperature long time (LTLT) treatment residual IgG activities of raw milk, IgG 50 mg and 250 mg fortified milk products decreased to 79%, 30% and 21.6%, as compared to those before heat treatment respectively. However, almost no residual IgG activities were detected when IgG fortified milk was heated at 95$^{\circ}C$ for 15 sec. There was no significant change in the residual IgG activities of IgG fortified milk powder products upon different dissolving temperatures (30$^{\circ}C$, 40$^{\circ}C$, 50$^{\circ}C$ and 60$^{\circ}C$).

A Study on Preparation and Binding Properties of Germanium-fortified Yeast (게르마늄강화효모의 제조 및 이의 게르마늄 결합에 관한 연구)

  • Lee, Sung-Hee;Ahn, Sang-Doo;Rho, Sook-Nyung;Sohn, Tsang-Uk
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.382-387
    • /
    • 2005
  • The aim of this study was to identify binding properties of germanium (Ge) in Germanium-fortified Yeast using optimum manufacturing process. The ratio of yeast cell and germanium solution was 1 : 0.5 (50%), and pH 6.5, $35^{\circ}C$ and 20 h during fermentation, and Germanium-fortified Yeast produced. In results of the XRD, NMR and FT-IR analysis, it was different adding inorganic Ge $(GeO_2)$ during fermentation process from transformed into germanium in Germanium-fortified Yeast. And germanium concentration was not shown any difference before and after in the dialysis test with SGF (simulated gastric fluids). Therefore, Germanium-fortified Yeast of Geranti made by using biosynthetic technology was considered that transformed into organic properties during fermentation process. And, this result showed that Germanium-fortified Yeast was not dissociated under SGF (simulated gastric fluids) condition because of its structural binding safety. Thus, Germanium-fortified Yeast was transformed into organic germanium during biosynthetic cultivation. It is expected that this Germanium-fortified Yeast can be applied as a new dietary functional materials for cellular immunity, recovery of injured cells and immune system, and possible anticancer activities by activation immune cells like macrophage.

ACE-inhibitory Effect and Physicochemical Characteristics of Yogurt Beverage Fortified with Whey Protein Hydrolysates

  • Lim, Sung-Min;Lee, Na-Kyoung;Park, Keun-Kyu;Yoon, Yoh-Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.886-892
    • /
    • 2011
  • This study investigated the ACE-inhibitory effect of yogurt beverage fortified with hydrolysates as well as the suitability of hydrolysates as a nutraceutical additive to yogurt beverage. Three whey protein hydrolysates hydrolyzed by alcalase, protamex, and trypsin were each added to yogurt beverage at concentrations of 1.25, 2.5, and 5 mg/mL. Yogurt beverage fortified with 2.5 mg/mL of hydrolysates had 61-69% ACE-inhibitory activity, whereas yogurt beverage fortified with 5 mg/mL of hydrolysates showed 74% ACE-inhibitory activity. There were no significant differences in ACE-inhibitory activity between the alcalase or protamex hydrolysates during storage; however, trypsin hydrolysate exhibited significant differences. On the other hand, physicochemical characteristics such as pH (3.47-3.77), titratable acidity (0.81-0.84%), colority, viable cell count, and sensory qualities were not significantly different among the tested yogurt beverage samples during storage. These results showed that yogurt beverage fortified with whey protein hydrolysates maintained antihypertensive activity and underwent no unfavorable changes in physicochemical characteristics regardless of enzyme type.

A study on the Selection Attributes and Purchasing Behavior of Protein Fortified Snack and Vegan Snack (고단백 스낵과 비건 스낵에 대한 선택속성과 구매 행동 연구)

  • Park, Hee Ran;Cho, Mi Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.4
    • /
    • pp.373-381
    • /
    • 2021
  • The number of vegans has increased rapidly due to religious and ethical beliefs, environmental concerns, health, etc. Also, as interest in healthy and safe food increases, the demand for organic products or nutrition-enhanced products is increasing. Therefore, this study aimed to investigate the selection attributes and purchasing behavior for protein-fortified and vegan snacks. It is anticipated that the results would find use as basic data for developing protein-fortified snacks for vegans that can meet consumer needs and derive marketing strategies. A survey was conducted on 140 consumers. According to the analysis of their purchase behavior, the number of people who had purchased high-protein snacks and vegan snacks was higher than those who did not have prior experience. The reasons for the purchase of protein fortified snacks included 'meal replacement' at 'offline-convenient store/supermarket'. Vegan snacks were purchased for 'ethical beliefs, health, environment' at 'offline-vegan restaurant, bakery'. Both snacks showed above-normal preferences. However, it is necessary to improve taste and flavor when developing these products as these were the factors that negatively impacted the preferences. The attributes were factorized into the 'showing off factor', 'sensory factor', 'credence factor', and 'functional factor' and the 'sensory factor' was considered the most important.

Current Status of Nutrient Fortification in Processed Foods and Nutrition Labeling (가공식품의 영양강화 현황과 영양표시)

  • Jang, Sun-Ok
    • Journal of the Korean Dietetic Association
    • /
    • v.4 no.2
    • /
    • pp.160-167
    • /
    • 1998
  • Current status of nutrient fortification in processed food in Korea were presented by analyzing the information shown on food labels. The obtained information was assessed by the regulations on food fortification in both Korea and other countries including Codex. The most current regulations were gathered from internet. The results are summarized as follows. 1. Major nutrients fortified were calcium, Vit C, Vit B complex, iron and fiber. The forfified foods were not limitted to certain food group with more frequent fortification in snackfoods, cereal, ramyun, retort pouch foods, milk, and youguart. The descriptive terms of nutrition label for the fortification were various including high, supplemented, added, source, fortified, and abundance though the difference among these terms were not distinct. 2. Current regulation on nutrition label requires to give the content of the fortified nutrient and % RDA. However not all of food items carry above information. Also some ingredients such as chitosan, DHA, taurine, $\omega$-3 fatty acid, chondrichin, bifidus were supplemented mainly to the snack foods which FDA(USA) does not allow to be fortified. 3. The nutrient most frequently fortified was calcium and general practice of fortification appears to follow the regulation in Korea. Presently the regulation itself is not well described, this nutient fortification can cause toxic effect. Since calcium was supplemented to wide range of food group consumers who are not conscious of the safe upper limit may intake the fortified food up to the level of 2g/day. 4. For the effective fortification in Korea, the regulation on fortification should be reformed in accordance with the international guideline Codex and the regulations in other countries especially in America and Japan.

  • PDF

Modification of Herbal Product(Herb Mix®) to Improve the Efficacy on the Growth and Laying Performance of Chickens (닭의 성장과 산란 생산성 개선 효과 증대를 위한 한방제제(Herb Mix®)의 개량에 관한 연구)

  • Lee, W.S.;Paik, I.K.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.4
    • /
    • pp.245-251
    • /
    • 2007
  • This study was conducted to investigate the effects of modification of a herbal recipe(Herb $Mix^{(R)}$) on the growth of pullet and laying performance of hens. The formula of Herb $Mix^{(R)}$, a mixture of Rehmannia glutinosa, Angelica gigas, Discorea japonica, Glycyrrhiza uralensis, Schisandra chinensis and Ligusticum jeholense, was modified in mixing ratio. A total of 1,120 pullets(Hy-Line Brown) of 14 wks old were assigned to seven treatments; control, Herb $Mix^{(R)}$(HM), R. glutinosa fortified HM, A. gigas fortified HM, D. japonica fortified HM, G. uralensis fortified HM, S. chinensis fortified HM, L. jeholense fortified HM and Flavomycin supplemented diet. Each treatment had 8 replicates of 20 birds each housed in 2 birds cages. Body weight at 10% egg production was significantly(P<0.05) influenced by treatments. Birds fed A. gigas fortified HM diet were heaviest followed by L. jeholense fortified HM, HM-original and D. japonica fortified HM, Flavomycin supplemented diet and R. glutinosa while those fed control diet were lightest. Also, age reaching 50% egg production and peak production was earliest in A. gigas fortified HM and latest in the control. Egg production, feed intake, feed conversion and egg weight were significantly influenced by treatments. Significant improvement in egg production and feed intake was shown in A. gigas fortified HM treatment. Feed conversion ratio was lowest in antibiotic(Flavomycin) treatment and egg weight was heaviest in L. jeholense fortified HM treatment. There were no significant differences among treatments in intestinal microflora but cfu of Cl. perfringnes and E. coli tended to be lower in HM treatments than the control. Among the leucocytes of blood, the HM treatments were lower than the control in counts of white blood cell and heterophils. It was concluded that modification of Herb $Mix^{(R)}$ fortifying with A. gigas, D. japonica and L. jeholense significantly influence growth and laying performance of birds.

Study on Identification and Purification of Germanium-fortified Yeast (게르마늄강화효모의 게르마늄결합 단백질의 분리 및 확인에 관한 연구)

  • Lee, Sung-Hee;Lee, Sang-Kwang;Lee, Hyun-Joo;Yi, Yong-Sub;Park, Eun-Woo
    • Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.55-59
    • /
    • 2006
  • This study was designed to investigate the optimum manufacturing condition of germanium-fortified yeast, and the binding properties of germanium (Ge) in germanium-fortified yeast. The nutritional optimum conditions were glucose 3.0 (w/v) %, yeast extracts 0.3 (w/v) % and peptone 0.5 (w/v) %, and the amounts of yeast cells were 67.4 mg/ml. And, the standard germanium-fortified yeast was produced under the condition at the ratio of yeast cell and germanium solution was 1 : 0.5 (50%), pH 6.5 and $35-40^{\circ}C$ during fermentation. In results of the identification, binding of germanium-protein showed structural difference between the inorganic Ge $(GeO_2)$ added during fermentation process and germanium-fortified yeast. Therefore, germanium-fortified yeast made by biosynthetic technology formed structurally safe organic germanium during fermentation process. Germanium-fortified yeast can be applied as a new functional material far the improvement of health, the prevention and treatment of chronic degenerative disease like cancer, and the enforcement of immune system.

The Stability of Water-soluble and Fat-soluble vitamin in milk by Heat treatments (수용성비타민과 지용성비타민의 가열에 대한 안정성)

  • 허정윤;황인경
    • Korean journal of food and cookery science
    • /
    • v.18 no.5
    • /
    • pp.487-494
    • /
    • 2002
  • This study was conducted to investigate the thermal stability of water-soluble and fat-soluble vitamins dissolved in water and milk by various heat treatments. Vitamin samples were prepared by dissolving them in water and milk at various concentrations, and were heat treated for 30 min at 65$\^{C}$, 15 sec at 85$\^{C}$, 5 sec at 100$\^{C}$, 121$\^{C}$ at 15 min, the levels of residual vitamin were measured by using HPLC. Milk samples were fortified with vitamins before and after UHT treatment. As heating over 100$\^{C}$, riboflavin in water were destructed more than 92% but fortified in milk showed less than 20% destruction, suggesting that riboflavin was protected by milk components. Also retinol heated ever 100$\^{C}$ was more stable in milk than in water. L-Ascorbic acid and cholecalciferol(D$_3$) showed a similar destruction rate in water and in fortified milk. L-ascorbic acid was easily destructed by UHT treatment. Destruction of thiamin and tocopherol was increased in fortified milk. Among tour capsulated water-soluble vitamins, L-ascorbic acid was much more stable compared with powder form. Nicotinic acid and folic acid either in capsule or powder form showed a slight destruction by heat treatment. The results suggested that the fortification of unstable vitamins such as L-ascorbic acid, thiamin, tocopherol and cholecalciferol(D$_3$) should be made in milk after heat treatment.