• Title/Summary/Keyword: formwork system

Search Result 77, Processing Time 0.023 seconds

An Experimental Study of Bond Stress between Concrete and Various Kinds of FRP Plank used as a Permanent Formwork (영구거푸집으로 활용한 FRP 판의 종류에 따른 콘크리트와의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.92-103
    • /
    • 2015
  • Development of new concrete bridge deck system with FRP plank using as a permanent formwork and the main tensile reinforcement recently has been actively conducted. Concurrent use as a reinforcing material and a permanent formwork, it is possible to reduce the construction time and construction costs than the usual concrete slab. In this study, an experiment was carried out for the bond stress between cast-in-place concrete and the type of FRP plank using as a permanent formwork. The interfacial fracture energy that can be one of the most important parameters were evaluated for adhesion performance and bond stress to know the characteristics of the failure mechanism of the adhesion surface. Interfacial fracture energy of normal concrete is 0.24kN/m of GF11 case, in the case of GF21, 0.43kN/m appears, in the case of CF11 and GF31, 0.44kN/m and 0.46kN/m respectively it appeared. In case of RFCON, 0.52kN/m appears from GF12, the CF12 and GF22, 0.51kN/m and 0.36kN/m appeared each case.

An Experimental Study for Bond Stress between DFRCC and Carbon FRP Plank Used as a Permanent Formwork (영구거푸집으로 활용한 탄소섬유 FRP 판과 DFRCC 사이의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1687-1694
    • /
    • 2014
  • Recently FRP of carbon fibers is utilized as a repairing and reinforcing material for concrete structures. In this study, the bond performance between CFRP planks and ductile fiber reinforced cementitious composites was evaluated in order to develop a new system of concrete bridge deck to take advantage of the FRP planks of carbon fiber using as a permanent formwork. In order to strengthen the bonding between the FRP and cast-in-place concrete, an epoxy resin circulated in the market generally was fitted with a silica sand. The bond stress of ordinary concrete appeared in 2.11~5.43MPa and the bond stress of ductile fiber reinforced cementitious composites DC1 (RF4000) and DC2 (PP) respectively were 3.91~5.60MPa, 2.92~5.21MPa and the average bond stress of DC3 (RF4000+RSC15) and DC4 (PP+RSC15) were 4.80~5.58MPa, 5.57~5.89MPa.

A Proposal of Simplified Bond Stress-Slip Model between FRP Plank and Cast-In-Place Concrete (FRP 판과 현장타설 콘크리트 사이의 단순 부착모델 제안)

  • Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The use of hybrid FRP-concrete structures with a dual purpose of both permanent formwork and reinforcement, has been considered in some studies recently. For the FRP plank and the concrete to act as a composite structural member a satisfactory bond at the interface between the smooth surface of the pultruded plank and the cast-in-place concrete must be developed. Sand was bonded to the pultruded FRP plank using a commercially available epoxy system. In applying general analysis techniques to evaluate the performance of composite structures with FRP stay-in-place forming, it is essential that characteristics of the bond stress-slip relation be identified. In this study I would like to propose a simplified bilinear bond stress-slip model for FRP composite structures.

Photovoltaic Application in System Formwork Operations of High-rise Building Construction (초고층 시스템거푸집 공사의 태양광에너지 활용 방안 연구)

  • Kim, Tae-Hoon;Lee, Myung-Do;Lee, Ung-Kyun;Cho, Hun-Hee;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2011
  • Recently, eco-friendly energy has been employed in diverse fields of industry in order to reduce environmental pollution and secure a new growth engine. In particular, practical applications of photovoltaic energy, such as building integrated photovoltaic systems, have been implemented to the construction industry based on the extensive interest in photovoltaic power as an unlimited and sustainable energy. While the construction of a high-rise building requires large amounts of energy, methods of reducing energy consumption in the construction phase have rarely been studied. Based on this motivation, the research proposes a photovoltaic based formwork system (PVFS), and then performs a design and feasibility analysis for its application to the construction of a high-rise building. Using a case study, the research implements various analyses, including area, position, and total allowable weight required by PVFS, and evaluates the influences of PVFS on the construction processes, as well as its economic feasibility. The proposed PVFS can be adopted to a real-world project in the near future, depending on the advancement of technology and economic feasibility. The results of this research will contribute to establishing a construction environment that promotes a reduction of energy consumption by using eco-friendly energy in the construction phase.

Exterior Wall Formwork System (외벽 거푸집 시스템(구의 아크로리버 현장 사례를 중심으로))

  • 김동진;김욱종;신동호;이도범
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.21-26
    • /
    • 2002
  • 구의 아크로리버 현장은 서울의 동쪽에 위치한 지하 5층, 지상 37층과 지상 22/26/29층 2개 동의 업무/판매시설 및 공동주택을 신축하는 주상복합형 프로젝트로서 주변에 강변시외버스터미널과 테크노마트가 바로 인접하여 평소 유동인구가 매우 많은 곳에 위치해 있다. (그림 1)은 구의 아크로리버의 조감도이며, 공사개요는 (표 1)과 같다.(중략)

Ductility of Column-Slab eoint in R/C Flat Plate System (플랫 플레이트 구조의 기둥.슬래브 접합부 연성에 관한 연구)

  • 김형기;박복만
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.113-119
    • /
    • 2000
  • The R/C flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problems in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab joint. Recently, the flat plate system accompanied with shear walls to resist the lateral loads is applied to high-rise buidings. Although the flat plate system is not considered in design as part of the lateral load-resisting system, it is required that this system keeps the ductile behavior for the lateral displacement of the building. However, it is unclear whether the column-slab joint possesses ductility enough to survive the lateral deformation. The objective of this paper is to investigate the major parameters that influence the ductility of R/C flat plate system by examining the existing experiments on column-slab joint. The effects of gravity load and shear reinforcement on the ductility of the flat plate system are presented.

Non-Supporting Form System for Top-Down Construction (지하 역타 공법용 상·하 분리형 무지주 지지체 개발)

  • Jeong, Mee-Ra;Rhim, Hong-Chul;Yom, Kyong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.27-30
    • /
    • 2008
  • For the purpose of developing economical and time-efficient formwork for Top-down construction, a Non-Supporting Form System has been proposed. The system is consisted of two parts: a hanging part to support a steel frame and a section of concrete slab, and the other hanging part to lower the steel frame. In this paper, the proposed system is compared to two existing systems of Non Supporting Top-down Method and Bracket Supported R/C Downward Method. It is expected that this system can be used in Top-down construction with further development.

  • PDF

STUDY OF NEW CAST-IN-PLACE MORTAR WALL FOR HOUSE CONSTRUCTION COMPARED TO BRICK AND MORTAR-BLOCK SYSTEM (A SIMULATION IN DIFFERENT AREAS)

  • Arief Setiawan Budi Nugroho;Shin-ei Takano
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.196-202
    • /
    • 2009
  • Study from Yogyakarta earthquake reconstruction program, cast-in-place wall using fix-size formwork system (Old-CIP) has offered a good alternative for house construction. A simulation has also confirmed that this system using mortar as the main material can provide cheapest cost and lowest total man power compared to conventional wall construction technique: brick or mortar-block wall. This paper presents the new wall construction technique: full size cast-in-place wall (New-CIP). The detail of how this new technique implemented is described. In addition, considering that material and labor cost in one area is different to others, cost analysis for different resources prices and wages of three cities are taken into a simulation. The analysis is aimed to distinguish the implementation feasibility of New-CIP system compared to the four common wall systems. Finally, its implementation resistance is also discussed.

  • PDF