• Title/Summary/Keyword: formulations

Search Result 1,697, Processing Time 0.026 seconds

Performance Analysis of Multirate LQG Control (멀티레이트 LQG 제어 기법의 성능 비교 분석)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one period, the time-varying system equation can be constructed into the time-invariant equation. The two multirate formulations have some trade-offs in the simplicity to construct the controller, the control performance. It is good issue to determine the suitable formulation in consideration of performance of them. In this paper, the two categories of multirate formulations will be compared in terms of the linear quadratic (LQ) cost function. The results are used to select the multirate formulation and the sampling rates suitable to the desired control performance.

  • PDF

Improved formulation for a structure-dependent integration method

  • Chang, Shuenn-Yih;Wu, Tsui-Huang;Tran, Ngoc-Cuong
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.149-162
    • /
    • 2016
  • Structure-dependent integration methods seem promising for structural dynamics applications since they can integrate unconditional stability and explicit formulation together, which can enable the integration methods to save many computational efforts when compared to an implicit method. A newly developed structure-dependent integration method can inherit such numerical properties. However, an unusual overshooting behavior might be experienced as it is used to compute a forced vibration response. The root cause of this inaccuracy is thoroughly explored herein. In addition, a scheme is proposed to modify this family method to overcome this unusual overshooting behavior. In fact, two improved formulations are proposed by adjusting the difference equations. As a result, it is verified that the two improved formulations of the integration methods can effectively overcome the difficulty arising from the inaccurate integration of the steady-state response of a high frequency mode.

The use of discontinuous first and second-order mixed boundary elements for 2D elastostatics

  • Severcan, M.H.;Tanrikulu, A.K.;Tanrikulu, A.H.;Deneme, I.O.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.703-718
    • /
    • 2010
  • In classical higher-order discontinuous boundary element formulation for two-dimensional elastostatics, interpolation functions for different boundary variables (i.e., boundary displacements and tractions) are assumed to be the same. However, there is a derivational relationship between these variables. This paper presents a boundary element formulation, called Mixed Boundary Element Formulation, for two dimensional elastostatic problems in which above mentioned relationship is taking into account. The formulations are performed by using discontinuous first and second-order mixed boundary elements. Based on the formulations presented in this study, two computer softwares are developed and verified through some example problems. The results show that the present formulation is credible.

Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Kartal, Murat Emre
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.499-518
    • /
    • 2009
  • The present paper investigates the stochastic seismic responses of steel structure systems with Partially Restrained (PR) connections by using Perturbation based Stochastic Finite Element (PSFEM) method. A stiffness matrix formulation of steel systems with PR connections and PSFEM and MCS formulations of structural systems are given. Based on the formulations, a computer program in FORTRAN language has been developed, and stochastic seismic analyses of steel frame and bridge systems have been performed for different types of connections. The connection parameters, material and geometrical properties are assumed to be random variables in the analyses. The Kocaeli earthquake occurred in 1999 is considered as a ground motion. The connection parameters, material and geometrical properties are considered to be random variables. The efficiency and accuracy of the proposed SFEM algorithm are validated by comparison with results of Monte Carlo simulation (MCS) method.

Optical Path Analysis and Experiments for Optical Microphone (광 마이크로폰 개발을 위한 광 경로해석 및 실험)

  • Kwon, Hyu-Sang;Kim, Kyong-Woo;Kim, Jin-Ki;Che, Woo-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.210-217
    • /
    • 2007
  • The theoretical formulations are derived for calculating optical power change for intensity modulated fiber optical microphone. The optical power change is due to optical paths, misalignment and geometry of optical coupler. Based on the theoretical equations, three different optical couplers are simulated with respect to several angles of optical couplers. In order to evaluate the formulation, a multi-mode to multi-mode coupler which is one of abovementioned optical couplers is designed and characterized by carving out both static experiments and dynamic experiments. Considering experimental results, this paper conclude that the theoretical formulations is very useful for design optical coupler and this kind of fiber optic sensor is adequate to microphone.

Arbitrary Lagrangian Eulerian (ALE) Formulations of Saturated Porous Media (포화 다공질 매체의 Arbitrary Lagrangian Eulerian (ALE) 정식화)

  • 박대효;정소찬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.235-242
    • /
    • 2003
  • The solids and the fluids in porous media have a relative velocity to each other. Due to physically and chemically different material properties and their relative velocity, the behavior of saturated porous media is extremely complicated. Thus, in order to describe and clarify the deformation behavior of saturated porous media, constitutive models for deformation of porous media coupling several effects such as flow of the fluids or thermodynanical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian elements, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of the solids and the fluids. In this work, governing equations of porous media based on ALE description are obtained from governing equations in frame of updated Lagrangian description. Then, weak forms of these equations are derived using arbitrary weighting functions.

  • PDF

A Study on Optimal Traffic Signal Controls in Urban Street Networks (도시 가로망에서의 최적교통신호등 결정모형의 실용화에 관한 연구)

  • 이승환
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.1
    • /
    • pp.3-23
    • /
    • 1987
  • Traffic signal control problems in urban street networks are formulated in two ways. In the formulations network flows are assumed to satisfy the user route choice criterion. the first formulation which is called implicit substiuation incorporates user route behavior implicitly in the objective function by recognizing the dependence of the link flows on the signal variables. On the other hands, the second one which is called 'penalty formulation' consists in expressing the route choice conditions in the form of a single nonlinear constraint. Approximate solution algorithm for each of the formulations was investigated in detail and computer codes were written to examine key aspects of each algorithm. A test was done on a network which is small in size but sufficiently complex in representing real-world traffic conditions and the test result shows that both algorithms produce converged solutions. It is recommended, however, that further studies should be done in order to compare the performance of each algorithm more in depth.

  • PDF

New Mathematical Formulations and an Efficient Genetic Algorithm for Finding a Stable Set in a Competitive Location Problem (경쟁적 입지선정 문제의 안정집합을 찾기 위한 수리적 모형과 유전 알고리즘)

  • Choi, In-Chan;Kim, Seong-In;Hwang, Dae-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.223-234
    • /
    • 1997
  • Companies often have to locate their facilities considering competitors' response to their locational decision. One model available in the literature is due to Dobson and Karmarkar, in which a firm has to decide locations so as to prevent competitors from entering the market after the firm's entry. In this paper, we provide new compact binary integer program formulations for their competitive location model and also present an efficient Genetic Algorithm(GA) for finding a (near-)optimal stable set. The GA we propose utilizes a penalty function to handle the feasibility of the problem and modified elitism for better performance of the algorithm. Computational comparisons indicate the superior performance of the GA over the Dobson and Karmarkar's branch and fathom algorithm.

  • PDF

Subsystem Synthesis Methods with Independent Coordinates for Real-Time Multibody Dynamics

  • Kim Sung-Soo;Wang Ji-Hyeun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.312-319
    • /
    • 2005
  • For real time dynamic simulation, two different subsystem synthesis methods with independent generalized coordinates have been developed and compared. In each formulation, the subsystem equations of motion are generated in terms of independent generalized coordinates. The first formulation is based on the relative Cartesian coordinates with respect to moving subsystem base body. The second formulation is based on the relative joint coordinates using recursive formulation. Computational efficiency of the formulations has been compared theoretically by the arithmetic operational counts. In order to verify real-time capability of the formulations, bump run simulations of a quarter car model with SLA suspension subsystem have been carried out to measure the actual CPU time.

The Detergent Effect of Mixed System with Fatty Alcohol Ethoxylate and Alkyl Amine Oxide (지방알코올에톡실레이트/알킬아민옥사이드 혼합물 계에서 세정효과)

  • Lee, Hyang-Woo;Choi, Seung-Ok;Kang, Yun-Seog;Nam, Ki-Dea
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.231-235
    • /
    • 1999
  • Several instances of synergistic interaction have been identified between alkyl amine oxide and long chain fatty acohol polyethoxylates in various surfactant formulation. The purpose of this study was examined whether these benefits could be observed within the framework of generic hand-surface cleaning formulations. Comparative evaluation were also carried out to determine the performance characteristics of low-and zero-phosphate systems in which amine oxide and alcohol ethoxylates are used. Best cleaning was observed with 1:1 mixtures of the subject surfactants, but substantial improvements over fatty alcohol ethoxylate alone also were noted with formulations that contained lower ratios of amine oxide.