• 제목/요약/키워드: formation stabilization

검색결과 206건 처리시간 0.02초

Formation of Threshold Switching Chalcogenide for Phase Change Switch Applications

  • Bang, Ki Su;Lee, Seung-Yun
    • Applied Science and Convergence Technology
    • /
    • 제23권1호
    • /
    • pp.34-39
    • /
    • 2014
  • The programmable switches which control the delivery of electrical signals in programmable logic devices are fabricated using memory technology. Although phase change memory (PCM) technology is one of the most promising candidates for the manufacturing of the programmable switches, the threshold switching material should be added to a PCM cell for realization of the programmable switches based on PCM technology. In this work, we report the impurity-doped $Ge_2Sb_2Te_5$ (GST) chalcogenide alloy exhibiting threshold switching property. Unlike the GST thin film, the doped GST thin film prepared by the incorporation of In and P into GST is not crystallized even at the postannealing temperature higher than $200^{\circ}C$. This specific crystallization behavior in the doped GST thin film is attributed to the stabilization of the amorphous phase of GST by In and P doping.

Ab initio Studies on the Hetero Diels-Alder Cycloaddition

  • 이본수;김찬경;최정욱;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권9호
    • /
    • pp.849-853
    • /
    • 1996
  • Hetero Dieis-Alder reactions containing phosphorus atom at various positions of diene and dienophile as well as standard Dieis-Alder reaction between ethylene and cis-l,3-butadiene have been studied using ab initio method. Activation energy showed a good linear relationship with the FMO energy gap between diene and dienophile, which can be normally used to explain Dieis-Alder reactivity. Since π-bond cleavage and σ-bonds formation occur concertedly at the TS, geometrical distortion of diene and dienophile from the reactant to the transition state is the source of barrier. Based on the linear correlations between activation barrier and deformation energy, and between deformation energy and π-bond order change, it was concluded that the activation barrier arises mainly from the breakage of π-bonds in diene and dienophile. Stabilization due to favorable orbital interaction is relatively small. The geometrical distortions raise MO levels of the TS, which is the origin of the activation energy. The lower barrier for the reactions of phosphorus containing dienophile (reactions C, D, and E) can be explained by the electronegativity effect of the phosphorus atom.

Experimental and analytical investigation of the shear behavior of strain hardening cementitious composites

  • Georgiou, Antroula V.;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.19-30
    • /
    • 2019
  • The mechanical behavior of Fiber Reinforced Cementitious Composites (FRCC) under direct shear is studied through experiment and analytical simulation. The cementitious composite considered contains 55% replacement of cement with fly ash and 2% (volume ratio) of short discontinuous synthetic fibers (in the form of mass reinforcement, comprising PVA - Polyvinyl Alcohol fibers). This class of cementitious materials exhibits ductility under tension with the formation of multiple fine cracks and significant delay of crack stabilization (i.e., localization of cracking at a single location). One of the behavioral parameters that concern structural design is the shear strength of this new type of fiber reinforced composites. This aspect was studied in the present work with the use of Push-off tests. The shear strength is then compared to the materials' tensile and splitting strength values.

Intracluster Ion/Molecule Reactions within 1,1-Difluoroethylene Homocluster

  • 이선영;최창주;정경훈
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권3호
    • /
    • pp.296-300
    • /
    • 1997
  • The intracluster ion/molecule reactions within 1,1-difluoroethene homocluster have been studied by electron-impact quadrupole mass spectrometry. When CH2CF2 seeded in helium is expanded and ionized by electron impact, two different types of ion/molecule association (polymerization) reaction products, i.e., (CH2CF2)n+ (n≥l) and (CF2CH2)qX+ (X=fragment species, q≤n), are formed. The higher association products, (CH2CF2)n+ (n=3, 4), have shown stronger intensities over the lower association product, (CH2CF2)2+, in the low electron impact energy region ( < 39 eV). These stronger intensities are interpreted in terms of the stabilization of these ions due to the ring formations over the dimer ion in this energy region. The evidence of ring formation mechanism is on the basis of the intensity distribution of fragments at various electron impact energy. In another typical branched-chain growth reaction of these compounds, the F-shift reaction path is found to be more favorable energetically than the H-shift via the fragment patterns of clusters and semi-empirical calculation.

Milk Protein-Stabilized Emulsion Delivery System and Its Application to Foods

  • Ha, Ho-Kyung;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • 제38권4호
    • /
    • pp.189-196
    • /
    • 2020
  • Milk proteins, such as casein and whey protein, exhibit significant potential as natural emulsifiers for the preparation and stabilization of emulsion-based delivery systems. This can be attributed to their unique functional properties, such as the amphiphilic nature, GRAS (generally recognized as safe) status, high nutritional value, and viscoelastic film-forming ability around oil droplets. In addition, milk protein has been used as a coating material in emulsion-based delivery systems to protect bioactive compounds during food processing and storage owing to its unique functional properties. These properties include the ability to bind lipophilic bioactive compounds and antioxidant activity. In this review, we present the use of milk proteins as emulsifiers for the formation of emulsions and food applications of milk protein-stabilized emulsion delivery systems.

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis

  • Jena, Jayashree;Pradhan, Nilotpala;Nayak, Rati Ranjan;Dash, Bishnu P.;Sukla, Lala Behari;Panda, Prasanna K.;Mishra, Barada K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.522-533
    • /
    • 2014
  • Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.

무기인산염이 골유도재생에 미치는 영향 (Effect of inorganic polyphosphate on guided bone regeneration)

  • 정종혁;권영혁;박준봉;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.491-510
    • /
    • 2005
  • This study was performed to evaluate the effect of inorganic polyphosphate on bone formation in the calvaria of rabbit in the procedure of guided bone regeneration with bovine cancellous bone graft and titanium reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane. The rabbits were divided into four groups. Control group I used only TR-ePTFE membrane, control group II used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in saline, experimental group III and IV used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 1% or 2% inorganic polyphosphate respectively. After decortication in the calvaria, GBR procedure was performed on 12 rabbits with titanium reinforced ePTFE membrane filled with deproteinized bovine bone mineral soaked in saline or inorganic polyphosphate. The animals were sacrificed at 2 weeks, 4 weeks, and 8 weeks after the surgery. Decalcified and non-decalcified specimens were processed for histologic and immunohistochemistric analysis. 1. Titanium reinforced ePTFE(TR-ePTFE) membrane showed good spacemaking and cell occlusiveness capability, but it showed poor wound stabilization. 2. The deproteinized bovine bone mineral did not promote bone regeneration, but it acted as a space filler. 3. There was no complete resorption of the deproteinized bovine bone mineral within 8 weeks. 4. 1% inorganic polyphosphate did not promote bone formation, but 2% inorganic polyphosphate promoted bone formation. Within the above results, 2% inorganic polyphosphate could be used effectively for bone regeneration.

Mitigating Metal-dissolution in a High-voltage 15 wt% Si-Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives

  • Kim, Jaeram;Kwak, Sehyun;Pham, Hieu Quang;Jo, Hyuntak;Jeon, Do-Man;Yang, A-Reum;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.269-278
    • /
    • 2022
  • Utilization of high-voltage electrolyte additive(s) at a small fraction is a cost-effective strategy for a good solid electrolyte interphase (SEI) formation and performance improvement of a lithium-rich layered oxide-based high-energy lithium-ion cell by avoiding the occurrence of metal-dissolution that is one of the failure modes. To mitigate metal-dissolution, we explored fluorinated dual-additives of fluoroethylene carbonate (FEC) and di(2,2,2-trifluoroethyl)carbonate (DFDEC) for building-up of a good SEI in a 4.7 V full-cell that consists of high-capacity silicon-graphite composite (15 wt% Si/C/CF/C-graphite) anode and Li1.13Mn0.463Ni0.203Co0.203O2 (LMNC) cathode. The full-cell including optimum fractions of dual-additives shows increased capacity to 228 mAhg-1 at 0.2C and improved performance from the one in the base electrolyte. Surface analysis results find that the SEI stabilization of LMNC cathode induced by dual-additives leads to a suppression of soluble Mn2+-O formation at cathode surface, mitigating metal-dissolution event and crack formation as well as structural degradation. The SEI and structure of Si/C/CF/C-graphite anode is also stabilized by the effects of dual-additives, contributing to performance improvement. The data give insight into a basic understanding of cathode-electrolyte and anode-electrolyte interfacial processes and cathode-anode interaction that are critical factors affecting full-cell performance.

하천 수문 특성과 유기물 성상 변화에 따른 하상 유동상 퇴적물 거동 연구 (Formation and Deformation of the Fluid Mud Layer on Riverbeds under the Influence of the Hydrological Property and Organic Matter Composition)

  • 트렁 틴 휜;허진;이병준
    • 한국물환경학회지
    • /
    • 제40권2호
    • /
    • pp.79-88
    • /
    • 2024
  • This study employed field measurements and biogeochemical analysis to examine the effects of seasonal conditions (e.g., temperature and precipitation) and human intervention (e.g., dam or weir construction) on the chemical composition of dissolved organic matter, flocculation kinetics of suspended particulate matter, and formation of the fluid mud layer on riverbeds. The results indicated that a water environment with a substantial amount of biopolymers offered favorable conditions for flocculation kinetics during an algal bloom period in summer; a thick fluid mud layer was found to be predominated with cohesive materials during this period. However, after high rainfall, a substantial influx of terrigenous humic substances led to enhanced stabilization of the particulate matter, thereby decreasing flocculation and deposition, and the reduced biopolymer composition served to weaken the erosion resistance of the fluid mud on the riverbed. Moreover, a high-turbulence condition disaggregated the flocs and the fluid mud layer and resuspended the suspended particulate matter in the water column. This study demonstrates the mutual relationship that exists between biogeochemistry, flocculation kinetics, and the formation of the fluid mud layer on the riverine area during different seasons and under varying hydrological conditions. These findings are expected to eventually help inform the more optimal management of water resources, which is an urgent task in the face of anthropogenic stressors and climate change.

자가치아 뼈 이식재의 유용성에 관한 임상적 연구 (Clinical Study on the Efficacy of the Autogenous Tooth Bone Graft Material (AutoBT))

  • 한민우;이정근
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제35권4호
    • /
    • pp.221-226
    • /
    • 2013
  • Purpose: This study is to evaluate the efficacy of the autogenous tooth bone graft material, clinically and radiologically, as related to implant installation. Methods: In oral and maxillofacial surgery department of Ajou University Hospital, guided bone regeneration (GBR), implant placement combined with GBR, sinus graft, implant placement combined with sinus graft, and defect filling were performed in 46 patients, using autogenous tooth bone. Among these, 66 implants were inserted with autogenous tooth bone. Implant stability quotient (ISQ) was measured by Osstell Mentor (Integration Diagnostics, Goteborg, Sweden) on 39 implants on the operation date and 4 months later, and on 21 implants 9months on the average at the final setting of restoration. Twenty-eight implants with GBR and sinus graft (GBR group: n=14, sinus graft group: n=14) were evaluated radiologically to measure the resorption of grafted autogenous tooth bone after loading. Results: The average initial stabilization of the installed implants was 67 ISQ, and the average secondary stabilization at 4 months later was 76. The average bone loss of GBR group as measured 8.0 months after application of prosthesis loading was 0.29 mm and the average bone loss of the sinus graft group as measured 7.6 months after application of prosthesis loading was 0.66 mm, respectively. In the histological assessment, formation of the new bone and continuous trabecular bone pattern was identified around autogenous tooth bone. Conclusion: Based on these results, we concluded that autogenous tooth bone is an excellent bone graft material that can substitute the autogenous bone.