• Title/Summary/Keyword: form-accuracy

Search Result 1,360, Processing Time 0.023 seconds

Development of Profilometry based on a Curvature Measurement (곡률에 근거한 형상 측정기술 개발)

  • Kim, Byoung-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.130-134
    • /
    • 2007
  • I present a novel curvature profilometer devised fur the profile measurement of aspheric and free-form surfaces on the nanometer scale. A profile is reconstructed from measuring the curvature of a test part of the surface at several locations along a line. For profile measurement of free-farm surfaces, methods based on local part curvature sensing have strong appeal. Unlike full-aperture interferometry they do not require customized null optics. The measurement accuracy of the curvature profilometer was assessed by comparison with a well-calibrated interferometer in NIST. Experimental results prove that the maximum discrepancy turns out to be 37 nm on the 28 mm measurement range for the spherical mirror.

Deep Learning Based Object Recognition in Spherical Panoramic Image (구면 파노라마 영상에서의 딥러닝 기반 객체 인식)

  • Jung, Minsuk;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.5-14
    • /
    • 2018
  • A lot of research has been done on image recognition technique for planar images and the performance has also been improved. However, it is difficult to recognize objects in spherical panoramic images or images in special form which are given in various environments because of the spherical distortion given in different form from the planar case. In this paper, we show that the neural network recognition approach can be used for object recognition in spherical image and suggest a method of using cubemap transform in order to increase recognition accuracy in spherical image.

Harmonic State Estimation in Power System (전력시스템 고조파 상태 추정에 관한 연구)

  • Park, H.C.;Lee, J.P.;Wang, Y.P.;Chong, H.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.117-120
    • /
    • 2002
  • Electrical power system has very complexity problem that it is plan measurement system to achieve Harmonic State Estimation (HSE). This complexity problem depends on discord of necessary accuracy, certainty of noise that exist in data communication damage and converter, adaptability of network modification and minimum of expense size of system, estimated monitering. Also, quantity of available measurement equipment for harmonic measurement has been limited. Therefore, systematic method that choose measurement location for harmonic state estimation. This paper is that see proposed HSE that use Observability Analysis(OA) for harmonic state estimation of electrical power system. OA depends on measurement number, measurement location and measurement form here, it is analysis method that depend on network form and admittance of the system. OA used achieve harmonic state estimation that it is Applied to New Zealand electrical power system to prove validity of HSE algorithm that propose. This study result about harmonic state estimation of electrical power system displayed very economical and effective method by OA.

  • PDF

Research on Ultra-precision Grinding Work of Silicon Carbide (실리콘 카바이드의 초정밀 연삭 가공에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.58-63
    • /
    • 2009
  • Silicon carbide (SiC) has been used for many engineering applications because of their high strength at high temperatures and high resistances to chemical degradation. SiC is very useful especially for a glass lens mold whose components demanded to the machining with good surface finish and low surface damage. The performance and reliability of optical components are strongly influenced by the surface damage of SiC during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified SiC glass lens mold. Usually the major form of damage in grinding of SiC is a crack occurs at surface and subsurface. The energy introduced in the layers close to the surface leads to the formation of these cracks. The experimental studies have been carried out to get optimum conditions for grinding of silicon carbide. To get the required qualified surface finish in grinding of SiC, the selection of type of the wheel is also important. Grinding processes of sintered SiC work-pieces is carried out with varying wheel type, depth of cut and feed using diamond wheel. The machining result of the surface roughness and the number of flaws, have been analyzed by use of surface profilers and SEM.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

Optimization of Pipelined Discrete Wavelet Packet Transform Based on an Efficient Transpose Form and an Advanced Functional Sharing Technique

  • Nguyen, Hung-Ngoc;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.374-385
    • /
    • 2019
  • This paper presents an optimal implementation of a Daubechies-based pipelined discrete wavelet packet transform (DWPT) processor using finite impulse response (FIR) filter banks. The feed-forward pipelined (FFP) architecture is exploited for implementation of the DWPT on the field-programmable gate array (FPGA). The proposed DWPT is based on an efficient transpose form structure, thereby reducing its computational complexity by half of the system. Moreover, the efficiency of the design is further improved by using a canonical-signed digit-based binary expression (CSDBE) and advanced functional sharing (AFS) methods. In this work, the AFS technique is proposed to optimize the convolution of FIR filter banks for DWPT decomposition, which reduces the hardware resource utilization by not requiring any embedded digital signal processing (DSP) blocks. The proposed AFS and CSDBE-based DWPT system is embedded on the Virtex-7 FPGA board for testing. The proposed design is implemented as an intellectual property (IP) logic core that can easily be integrated into DSP systems for sub-band analysis. The achieved results conclude that the proposed method is very efficient in improving hardware resource utilization while maintaining accuracy of the result of DWPT.

Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions

  • Benhenni, Mohammed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Abbes, Fazilay;Li, Yuming;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.535-549
    • /
    • 2019
  • This study aimed to develop a high-order shear deformation theory to predict the free vibration of hybrid cross-ply laminated plates under different boundary conditions. The equations of motion for laminated hybrid rectangular plates are derived and obtained by using Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained by using Navier's solution. To assess the validity of our method, we used the finite element method. Firstly, the analytical and the numerical implementations were validated for an antisymmetric cross-ply square laminated with available results in the literature. Then, the effects of side-to-thickness ratio, aspect ratio, lamination schemes, and material properties on the fundamental frequencies for different combinations of boundary conditions of hybrid composite plates are investigated. The comparison of the analytical solutions with the corresponding finite element simulations shows the good accuracy of the proposed analytical closed form solution in predicting the fundamental frequencies of hybrid cross-ply laminated plates under different boundary conditions.

NTP-ERSN verification with C5G7 1D extension benchmark and GUI development

  • Lahdour, M.;El Bardouni, T.;El Hajjaji, O.;Chakir, E.;Mohammed, M.;Al Zain, Jamal;Ziani, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1079-1087
    • /
    • 2021
  • NTP-ERSN is a package developed for solving the multigroup form of the discrete ordinates, characteristics and collision probability of the Boltzmann transport equation in one-dimensional cartesian geometry, by combining pin cells. In this work, C5G7 MOX benchmark is used to verify the accuracy and efficiency of NTP-ERSN package, by treating reactor core problems without spatial homogenization. This benchmark requires solutions in the form of normalized pin powers as well as the vectors and the eigenvalue. All NTP-ERSN simulations are carried out with appropriate spatial and angular approximations. A good agreement between NTP-ERSN results with those obtained with OpenMC calculation code for seven energy groups. In addition, our studies about angular and mesh refinements are carried out to produce better quality solution. Moreover, NTP-ERSN GUI has also been updated and adapted to python 3 programming language.

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

Handwritten Indic Digit Recognition using Deep Hybrid Capsule Network

  • Mohammad Reduanul Haque;Rubaiya Hafiz;Mohammad Zahidul Islam;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.89-94
    • /
    • 2024
  • Indian subcontinent is a birthplace of multilingual people where documents such as job application form, passport, number plate identification, and so forth is composed of text contents written in different languages/scripts. These scripts may be in the form of different indic numerals in a single document page. Due to this reason, building a generic recognizer that is capable of recognizing handwritten indic digits written by diverse writers is needed. Also, a lot of work has been done for various non-Indic numerals particularly, in case of Roman, but, in case of Indic digits, the research is limited. Moreover, most of the research focuses with only on MNIST datasets or with only single datasets, either because of time restraints or because the model is tailored to a specific task. In this work, a hybrid model is proposed to recognize all available indic handwritten digit images using the existing benchmark datasets. The proposed method bridges the automatically learnt features of Capsule Network with hand crafted Bag of Feature (BoF) extraction method. Along the way, we analyze (1) the successes (2) explore whether this method will perform well on more difficult conditions i.e. noise, color, affine transformations, intra-class variation, natural scenes. Experimental results show that the hybrid method gives better accuracy in comparison with Capsule Network.