• Title/Summary/Keyword: form-accuracy

Search Result 1,350, Processing Time 0.031 seconds

Three-dimensional magnetostatic analysis using EDGE Element (변 요소를 이용한 3 차원 정자장 해석)

  • Lee, Hong-Bae;Kim, Dong-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.32-35
    • /
    • 1990
  • If one express the basio equations of electromagne tics in terms of differential form, one can have many physical meanings. To obtain this advantages in Finite Element Method, we should use new element. In this study, we select degree of freedom as circulation A along edges of the mesh, and use Egde Element because A is i-form. We apply this method to some examples of the 3-D magnetostatics, and obtain decrease of total nonzeros and increase of accuracy.

  • PDF

Minimum Zone Evaluation of Straightness Using the Genius Education Concept (영재 교육 개념을 응용한 직선도의 최소영역 평가)

  • Kim, Soo-Kwang;Cho, Dong-Woo;Lee, Kahng-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.130-137
    • /
    • 1999
  • The criteria for determining the elements are the minimum zone method(MZM) and the least squares method(LSM). The LSM is deterministic and simple but is limited at the measurements whose errors are significant compared with form errors. For the precise condition, minimum zone method(MZM) has been selected to determine the elements. It is not deterministic and nonlinear so that a optimizing procedure is needed. The Straightness is the fundamental problem in the evaluating form error. In this paper, a new approach adapting the genius education concept is proposed to obtain an accurate results for the minimum zone problem of the straightness. Its computational algorithm is studied on a set of randomly generated data. To be of almost no account of the specification(the number and the standard devistion etc.) of the sample data, the results shows excellent reliability and high accuracy in estimating the straightness.

  • PDF

SpringBack Prediction for Sheet Metal forming Process Using Shell Element (쉘 요소를 이용한 박판성형 공정의 스프링 백 예측)

  • Ko Hyung-Hoon;Lee Chan-Ho;Kim Byung-Sik;Lee Kwang-Sik;Jung Dong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.402-405
    • /
    • 2005
  • Such press-forming process are the used machine ability and the characteristic, used material, tile accuracy of the part, condition of a process are considered the designed. In order to estimate in automotive sheet forming processes used AutoForm software. A through in simulation result comparison with experimentation result, it was possible to know that much the same estimated spring-back through a forming analysis. By making apply this to an industrial site the productivity improvement and cost reduction etc. effect able was predicted.

  • PDF

Contour Control Algorithm for Parallel Machine Tool (병렬형 공작기계를 위한 윤곽제어 알고리즘)

  • 이승환;홍대희;최우천;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1003-1006
    • /
    • 2002
  • In machining free-form curves with a machine tool equipped with parallel device, improving contouring accuracy is very important. In this paper, we present contouring control algorithm far parallel machine tool. The relation between the error in Joint space and the error in catesian space is evaluated, and we estimate contouring error vector which efficiently determines the variable gains for the cross coupled control. To show the validity of the algorithm, the contouring control is simulated for free form contour trajectory in cubic parallel machine tool model.

  • PDF

The Linkage between Spline/NURBS Free Surface and Shell Finite Element Analysis (Spline/NURBS 자유곡면과 쉘 해석의 연동)

  • 노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.303-310
    • /
    • 2001
  • We propose the framework which directly links shell finite element to the free form surface geometric modeling. For the development of a robust shell element, a first order shear deformable shell theory and partial mixed variational functional are provided. Bubble functions are included in the shape function of displacement to improve the performance of the developed element. The Spline/NURBS is used to generate the general free form of parameterized shell surfaces. The proposed shell finite element model linked with NURBS surface representation provides efficiency for design and analysis. Numerical examples are given in order to assess the accuracy of the performances of the proposed element.

  • PDF

Finite Element Analysis for Cracks in Rubber Bonded to a Rigid Material (강체와 접합된 고무의 균열에 대한 유한요소해석)

  • 김창식;임세영
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.111-120
    • /
    • 1994
  • Cracks in rubber bonded to a rigid material such as steel are analyzed with the aid of a mixed finite element technique. Firstly the weak form is derived for finite element analysis of an incompressible material, and the Mooney-Rivlin form is assumed for the constitutive modeling of rubber. The numerical results from finite element analysis is examined to confirm the accuracy and convergence of solution by way of comparison to other numerical results. The interpretation of the J-integral for large elastic deformation as the energy release rate is confirmed, and the J-integral is calculated for varing crack length. The crack growth stability is discussed using the result of finite element analysis.

  • PDF

Inelastic response of wide flange steel beams curved by symmetrical weak axis bending using two-point loads

  • Gergess, Antoine N.;Sen, Rajan
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.951-965
    • /
    • 2014
  • Point bending is commonly used for cambering and curving steel girders to large radii. In this system, a hydraulic ram or press is used to apply concentrated loads at selected points to obtain the required vertical (cambering) or horizontal (curving) curved profile from induced permanent deformations. This paper derives closed form solutions that relate loads to permanent deformations for horizontally curving wide flange steel beams based on their post-yield response. These solutions are presented in a parametric form to identify the relationship between key variables and their impact on the accuracy of the curving operation. It is shown that point bending could yield parabolic curved profiles that are within 1% of a desired circular curve if the span length to radius of curvature ratio (L / R) is less than 1.5 and the point loads are spaced at one third the beam length. Safe limits are then established on loads, strains and curvatures to avoid damaging the steel section. This leads to optimization of the point bending operation for inducing a circular profile in wide flange steel beams of any size.

A Study for the Roundness Estimation (진원도 형상 추정 연구)

  • Kim, Soo-Kwang;Jun, Jae-Uhk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.38-45
    • /
    • 2011
  • The criteria for determining the elements are the minimum zone method(MZM) and the least squares method(LSM). The LSM is deterministic and simple but is limited at the measurements whose errors are significant compared with form errors. For the precise condition, minimum zone method(MZM) has been selected to determine the elements. The roundness is the fundamental problem in the evaluating form errors. In this paper, anew approach adapting the genius education concept is proposed to obtain an accurate results for the MZM and the LSM of the roundness. Its computational algorithm is studied on a set of measured sample data. To be of almost no account of the specification(the number and the standard deviation etc.) of the sanple data, the results shoqs excellent reliability and high accuracy in estimating the roundness.

A Study on Forming Analysis of Overall Stemping Process Apply Shell Element (셸 요소를 적용한 전체 스팸핑 공정의 성형 해석에 관한 연구)

  • Jung, Dong-Won;Kim, Dong-Hong;Kim, Bong-Chun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.329-334
    • /
    • 2011
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The static implicit finite element method is applied effectively to analyze stamping processes from using AutoForm software. The simulation analysis can be applied to the membrane elements and shell elements. Membrane elements can be applied to good efficiency, but lower than the accuracy of shell elements. Therefore, simple drawing process applies membrane element, and spring-back and analysis of stamping process are judged that it is most efficient that apply shell clement. This study, the simulated results for stamping processes are shown and discussed.

Development of Wave and Viscous Flow Analysis System for Computational Evaluation of Hull Forms

  • Kim, Wu-Joan;Kim, Do-Hyun;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.3
    • /
    • pp.33-45
    • /
    • 2000
  • A computational system for wave and viscous flow analysis (WAVIS) has been developed. The system includes a pre-processor, flow solvers and a post-processor. The pre-processor is composed of full form presentation, surface mesh and field grid generation. The flow solvers are for potential and viscous flow calculation. The post-processor has graphic utility for result analysis. All the programs are integrated in a GUI-launcher package. To validate the developed CFD programs of WAVIS, the calculated results for modern commercial hull forms are compared with measurements. It is found that the results from WAVIS are in good agreement with the experimental data, illustrating the accuracy of the numerical methods employed for WAVIS.

  • PDF