• 제목/요약/키워드: forging ratio

검색결과 95건 처리시간 0.022초

냉간단조용 친환경 수용성 윤활제의 개발 (Development of Environmentally Friendly Water-Soluble Lubricant for Cold Forging)

  • 이인수;강종훈;김영량;제진수;고대철;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.195-198
    • /
    • 2006
  • Zinc phosphate coating is required in nearly all steel cold forging operations. However, the chemical byproducts of this lubricant system are difficult to dispose of and have a negative environmental impact. In order to replace zinc phosphate based lubricants partially or completely, candidate lubricant has been developed in this study. The performance evaluation of these lubricants was conducted using the double cup extrusion test and spike forging test. With the use of the commercial FEM code DEFORM, friction factor calibration curves, i.e. cup height ratio vs. punch stroke and spike height vs. punch stroke, were established for different friction factor values. By matching the cup height ratio and the punch stroke and spike height vs. punch stroke from experiment to that obtained from FE simulations, the friction factor of the lubricants was determined. Three water-soluble lubricants; namely, Mec Homat, Royalcoat, and the developed lubricant were found to perform comparable to or better than zinc phosphate.

  • PDF

단조 산화스케일로부터 철계분말 제조 기술개발 연구 (Study on the Reduction of Forging Oxide Scale using Hydrogen)

  • 이동원;윤중열;신선명;김인수;왕제필
    • 한국분말재료학회지
    • /
    • 제20권3호
    • /
    • pp.174-179
    • /
    • 2013
  • The study on the fabrication of iron powder from forging scales using hydrogen gas has been conducted on the effect of hydrogen partial pressure, temperature, and reactive time. The mechanism for the reduction of iron oxides was proposed with various steps, and it was found that reduction pattern might be different depending on temperature. The iron content in the scale and reduction ratio of oxygen were both increased with increasing reactive time at 0.1atm of hydrogen partial pressure. On the other hand, for over 30 minutes at 0.5 atm of hydrogen partial pressure, the values were found to be almost same. In the long run, iron metallic powder was obtained with over 90% of iron content and an average size of its powder was observed to be about $100{\mu}m$.

PAS부품의 공정개선에 관한 연구 (A Study on the Improvement of Forming Process of Power Assisted Steering Part)

  • 윤대영;황병복;유태곤
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.265-273
    • /
    • 2000
  • The conventional and new forging processes of the power steering worm blank are analyzed by the rigid-plastic finite element method. The conventional process contains three stages such as indentation, extrusion and upsetting, which was designed by a forming equipment expert. Process conditions such as reduction in area, semi-die angle and upsetting ratio are considered to prevent internal or geometrical defects. The results of simulation of the conventional forging process are summarized in terms of deformation patterns, load-stroke relationships and die pressures for each forming operation. Based on the simulation results of the current three-stage, the power steering worm blank forging process for improving the conventional process sequence is designed. Die pressures and forming loads of proposed process are within limit value which is proposed by experts and the proposed process is found to be proper for manufacturing the power steering worm blank.

  • PDF

유한요소법을 이용한 disk-brake piston의 공정설계 (Application of FEM to the Forming Process of Disk-Brake Piston)

  • 황병복;이호용
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.178-188
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic FEM has been applied to simulate the conventional four stage manufacturing processes, which include deep drawing and forging process. Simulation of one stage process from a selected stock to the final product shape is performed for generating information on additional requirements for metal flow. Two stage forming processes with different punch corner and nose geometries are also simulated to identify the possible best solutions. Finally, the best manufacturing process is selected, which is using a hemispherical punch int he deep drawing process.

  • PDF

신경망을 이용한 축대칭 냉간 단조품의 초기 소재 결정에 관한 연구 (A Study on the Determination of Initial Biller for Axisymmetric Cold Forging Products Using Neural Networks)

  • 김영호;배원병;박종옥
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.217-222
    • /
    • 1994
  • This paper describes the determination of optimal initial billet size for axisymmetric cold forging products using neural networks. The determination of optimal initial billet size is very important in forging design and forming sequence design, because the result of such designs and forming load can be different by variable initial billet sizes. The forming difficulty has been defined as the degree of difficulty in forming by 3 process ' forward extrusion, backward extrusion and upsetting. By neural networks a forming difficulty can be determined with the ratio of shape and forming process. From the graph of maximum, minimum, and average forming difficulties by variable billet sizes, the optimal billet size can be determined. The initial billets of a solid part and a hollow part whichwas determined by this study are compared with the sequence drawing generated by the one of forming sequence design system.

  • PDF

장축 다각 볼트 제조공정의 시뮬레이션 기술 (Special Simulation Technique of Multi-Faced Long Bolt Forging Process)

  • 한승상;엄재근;장성민;이민철;전만수;강신준;손요헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.44-47
    • /
    • 2009
  • In this paper, limitation of rigid-plastic finite element method caused from rigid-plasticity assumption and numerical problem is investigated in detail and a useful scheme is proposed to get rid of the plastic deformation in rigid or elastic region. A typical example of a possible long bar extrusion process is given, which may be impossible to simulate without using the proposed scheme. The scheme is successfully applied to simulating the long bolt forging processes.

  • PDF

폭연신계수를 이용한 플랜지단조의 초기형상설계 (preform Design by Use of Spread Coefficient for Flange Forging)

  • 김진영;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.157-166
    • /
    • 1995
  • A large crank shaft for ship engine consists of several components, such as throw, jornal, pin and flange. These compoents are individually made by open-die forging followed by machining and they are thermally fitted to form the crankshaft. In the present investigation, it was attempted to design an optimum preform for the throw by use of the spread coefficient. The spread coefficient found in the literature was confirmed by comparison with experimental results using plasticine. However, the preform designed by the spread coefficient was unable to produce the final product. The reason was found that the spread coefficient differs distinctly for the magnitude of bite ratio. Therefore, another spread coefficient, especially for low bite ratios, was proposed and the preform was redesigned. It was found that the new preform was able to produce the final product.

  • PDF

자유단조공법을 통한 중공형 메인샤프트 제조공정에 관한 연구 (Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging)

  • 권용철;강종훈;김상식
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.221-227
    • /
    • 2016
  • 풍력발전기에서 메인 샤프트는 로터허브와 증속기를 연결하는 중요 부품 중 하나이며 주로 자유단조공법을 통하여 제조된다. 하지만 고 MW급 이상의 메인샤프트는 중량을 감소시키기 위하여 중공형 설계가 이루어지며 주조공법을 이용하여 제조되고 있다. 본 연구의 목적은 중공형 메인샤프트를 단조공법을 이용하여 생산할 수 있는 제조공정을 개발하는 것이다. 자유단조 공법의 공정설계 방법에 따라 중실형과 중공형 메인샤프트를 제조하기 위한 단조공정을 각각 설계하였다. 설계된 공정의 성형가능성을 확인하기 위하여 온도, 변형률 속도에 따른 유동응력을 열간압축실험을 통하여 구한 후 유한요소해석을 수행하였다. 유한요소해석을 통하여 단조업계에서 통상 행해지는 중실형 단조공법의 온도 및 변형률 등의 관리인자와 제안된 중공형단조공법의 인자를 비교하여 성형가능성을 예측하였다. 시제품 제작을 통하여 중공형 형상을 원소재회수율, 내부품질, 형상 및 치수 등에서 높은 생산성으로 제조가 가능함을 확인하였다.

알루미늄 주조/단조 공정에서 주조조직 제어에 관한 연구 (A Study on the Control of Cast Microstructure in the Aluminum Casting/Forging Process)

  • 배원병;강정윤;이영석;이성모;홍창호
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.41-47
    • /
    • 1999
  • The scale of dendritic structure of a cast preform plays a key role in determining the mechanical properties of cast/forged products. In this study, casting experiments are carried out to reduce dendrite arm spacing (DAS) to smaller than 20 ${\mu}$m by increasing cooling rate of the mold and then to spheriodize dendritic structures by addition of alloying elements such as Zr and Ti-B. From the casting experiments, appropriate casting conditions for producing the cast preform of a motorcycle connecting rod are obtained. To obtain fine microstructures of the cast preform, mold temperature must set to be low whilst cooling rate being high. When cooling rate is 10 $^{\circ}C$/s, the size of DAS is 17.4 ${\mu}$m. And the degree of spheriodization of a grain in the cast preform is described by aspect ratio, which is defined as the ratio of major and minor radii of an elliptical grain. When 0.5% Zr and 0.24 % Ti+B are added to the molten aluminum alloy, the best aspect-ratio 0.75 is obtained. After forging the cast preform of a motorcycle connecting rod, the microstructure and mechanical properties of the cast preform are compared with those of the cast/forged product. Cast/forged products are superior in microstructure and in mechanical properties such as ultimate strength, elongation, and hardness.

  • PDF

자동변속기용 언더 드라이브 브레이크 피스톤의 두께 최적화를 위한 유한요소해석 (Finite Element Analysis for Optimizing the Initial Thickness of an Under-drive Brake Piston used in a Automatic Transmission)

  • 이주석;윤종헌;이정환;김선현;홍의창
    • 소성∙가공
    • /
    • 제23권2호
    • /
    • pp.95-102
    • /
    • 2014
  • The under-drive brake piston is an important component in automotive transmissions. It changes the velocity by controlling the gear ratio. It has been traditionally manufactured by hot forging. Recently, there has been an effort to replace this traditional manufacturing method with cold forging in order to improve the dimensional accuracy and decrease the surface roughness. Cold forging uses a smaller amount of initial material and also has a shorter cycle time since the forged surface can be the final surface without the need of post-processing such as machining or grinding. In the current study, finite element analysis was conducted to evaluate a process design using an initial plate with reduced thickness. This smaller thickness decreases the amount of material needed for the part as well as the machining to produce the final product.