• Title/Summary/Keyword: forest stand map

Search Result 49, Processing Time 0.027 seconds

A Study on the Improvement of Guideline in Digital Forest Type Map (수치임상도 작업매뉴얼의 개선방안에 관한 연구)

  • PARK, Jeong-Mook;DO, Mi-Ryung;SIM, Woo-Dam;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.168-182
    • /
    • 2019
  • The objectives of this study were to examine the production processes and methods of "Forest Type Map Actualization Production (Database (DB) Construction Work Manual)" (Work Manual) identify issues associated with the production processes and methods, and suggest solutions for them by applying evaluation items to a 1:5k digital forest type map. The evaluation items applied to a forest type map were divided into zoning and attributes, and the issues associated with the production processes and methods of Work Manual were derived through analyzing the characteristics of the stand structure and fragmentation by administrative districts. Korea is divided into five divisions, where one is set as the area changed naturally and the other four areas set as the area changed artificially. The area changed naturally has been updated every five years, and those changed artificially have been updated annually. The fragmentation of South Korea was analyzed in order to examine the consistency of the DB established for each region. The results showed that, in South Korea, the number of patches increased and the mean patch size decreased. As a result, the degree of fragmentation and the complexity of shapes increased. The degree of fragmentation and the complexity of shapes decreased in four regions out of 17 regions (metropolitan cities and provinces). The results indicated that there were spatial variations. The "Forest Classification" defines the minimum area of a zoning as 0.1ha. This study examined the criteria for the minimum area of a zoning by estimating the divided object (polygon unit) in a forest type map. The results of this study revealed that approximately 26% of objects were smaller than the minimum area of a zoning. The results implied that it would be necessary to establish the definition and the regeneration interval of "Areas Changed Artificially and Areas Changed Naturally", and improve the standard for the minimum area of a zoning. Among the attributes of Work Manual, "Species Change" item classifies terrain features into 52 types, and 43 types of them belong to stocking land. This study examined distribution ratios by extracting species information from the forest type map. It was found that each of 23 species, approximately 53% of species, occupied less than 0.1% of Forested land. The top three species were pine and other species. Although undergrowth on unstocked forest land are classified in the terrain feature system, their definition and classification criteria are not established in the "Forest Classification" item. Therefore, it will be needed to reestablish the terrain feature system and set the definitions of undergrowth.

Developing A Forest Management Computer Model For Field Applications Using GIS (지리정보(地理情報)시스템을 이용(理容)한 실무형(實務形) 산림경영전산(山林經營電算)모델의 개발(開發))

  • Chung, Joo Sang;Park, Eun Sik;Oh, Dong Ha
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.300-307
    • /
    • 1998
  • It is not an easy task for forest managers to make sound decisions on forest management and operations planning because of huge sets of spatial and temporal data and complex decision-making processes involved. However, as an efficient tool, GIS techniques enable them to enhance broad understandings on forest inventory and management conditions. In this study, we developed a GIS model for field use in forest management. In building the model, we have chosen MapInfo version 4.0 as the basic engine of the model. The model also includes an interface module to help forest managers use MapInfo functions easily. It handles MapInfo functions required to manage inventory data and analyze spatial distributions of forest stands. For testing field applicability of the model, we have build field data sets for a district of Chunchun National Forest. Then, we tested functions through quarrying stand attributes and constructing thematic maps. In this paper, the structures and functions of the model as well as the results of field applications are discussed.

  • PDF

Analysis of Forest Fire Damage Using LiDAR Data and SPOT-4 Satellite Images (LiDAR 자료 및 SPOT-4 위성영상을 활용한 산불피해 분석)

  • Song, Yeong Sun;Sohn, Hong Gyoo;Lee, Seok Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.527-534
    • /
    • 2006
  • This study estimated the forest damage of Kangwon-Do fire disaster occurred April 2005. For the estimation, the delineation of fire damaged area was performed using SPOT-4 satellite image and DSM (Digital surface model)/DTM (Digital Terrain Model) was generated by airborne and ground LiDAR data to calculate forests height. The damaged amount of money was calculated in forest area using stand volume formula, combining the canopy height from forest height model and digital stock map. The total forest damage amounted to 3.9 billion won.

Development of Mean Stand Height Module Using Image-Based Point Cloud and FUSION S/W (영상 기반 3차원 점군과 FUSION S/W 기반의 임분고 분석 모듈 개발)

  • KIM, Kyoung-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.169-185
    • /
    • 2016
  • Recently mean stand height has been added as new attribute to forest type maps, but it is often too costly and time consuming to manually measure 9,100,000 points from countrywide stereo aerial photos. In addition, tree heights are frequently measured around tombs and forest edges, which are poor representations of the interior tree stand. This work proposes an estimation of mean stand height using an image-based point cloud, which was extracted from stereo aerial photo with FUSION S/W. Then, a digital terrain model was created by filtering the DSM point cloud and subtracting the DTM from DSM, resulting in nDSM, which represents object heights (buildings, trees, etc.). The RMSE was calculated to compare differences in tree heights between those observed and extracted from the nDSM. The resulting RMSE of average total plot height was 0.96 m. Individual tree heights of the whole study site area were extracted using the USDA Forest Service's FUSION S/W. Finally, mean stand height was produced by averaging individual tree heights in a stand polygon of the forest type map. In order to automate the mean stand height extraction using photogrammetric methods, a module was developed as an ArcGIS add-in toolbox.

An Ecological Study on the Evergreen Broadleaved Forest of Jisimdo (지심도 상록활엽수목의 생태학적 연구)

  • Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.27 no.2
    • /
    • pp.51-60
    • /
    • 1984
  • Jisimdo is an island where evergreen broadleaved forests are well preserved. Soil environments and forest structures of Jisimdo were investigated, and an actual vegetation map and profile diagrams were drawn out. The natural vegetation of Jisimdo was divided into two stand units, one was evergreen broadleaved forest and the other was Pinus thunbergii forest. 26 species were identified as evergreen broadoeaved trees, and among them, Camellia japonica was the dominont of the tree layer of evergreen broadleaved forest. Profile diagram shows that Camellia japonica, with average height of 7∼8m, formed lower tree layer, and laurels like Cinnamomum japonicum, Machilus thunbergii, and Neolitsea sericea formed upper tree layer. In Pinus thunbergii forest, plants of shrub and herb layers were abundant because of much light penetrated into the forest floor, and these layers were largely composed of evergreen broadleaved trees. This fact shows the possibility of succession from Pinus thunbergii forest into evergreen broadleaved forest. Jisimdo is geographically adjacent to Jangseungpo and Okpo, and this increases the economic value of Jisimdo as a place of public resort. It will be necessary from being destroyed by land development and human interferences.

  • PDF

Development of a Methodology to Estimate the Degree of Green Naturality in Forest Area using Remote Sensor Data (임상도와 위성영상자료를 이용한 산림지역의 녹지자연도 추정기법 개발)

  • Lee, Kyu-Sung;Yoon, Jong-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.3
    • /
    • pp.77-90
    • /
    • 1999
  • The degree of green naturality (DGN) has played a key role for maintaining the environmental quality from inappropriate developments, although the quality and effectiveness of the mapping of DGN has been under debate. In this study, spatial distribution of degree of green naturality was initially estimated from forest stand maps that were produced from the aerial photo interpretation and extensive field survey. Once the boundary of initial classes of DGN were defined, it were overlaid with normalized difference vegetation index (NDVI) data that were derived from the recently obtained Landsat Thematic Mapper data. NDVI was calculated for each pixel from the radiometrically corrected satellite image. There were no significant differences in mean values of vegetation index among the initial DGN classes. However, the satellite derived vegetation index was very effective to delineate the developed and damaged forest lands and to adjust the initial value of DGN according to the distribution of NDVI within each class.

  • PDF

Estimating Stand Volume Pinus densiflora Forest Based on Climate Change Scenario in Korea (미래 기후변화 시나리오에 따른 우리나라 소나무 임분의 재적 추정)

  • Kim, Moonil;Lee, Woo-Kyun;Guishan, Cui;Nam, Kijun;Yu, Hangnan;Choi, Sol-E;Kim, Chang-Gil;Gwon, Tae-Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.105-112
    • /
    • 2014
  • The main purpose of this study is to measure spatio-temporal variation of forest tree volume based on the RCP(Representative Concentration Pathway) 8.5 scenario, targeting on Pinus densiflora forests which is the main tree species in South Korea. To estimate nationwide scale, $5^{th}$ forest type map and National Forest Inventory data were used. Also, to reflect the impact of change in place and climate on growth of forest trees, growth model reflecting the climate and topography features were applied. The result of the model validation, which compared the result of the model with the forest statistics of different cities and provinces, showed a high suitability. Considering the continuous climate change, volume of Pinus densiflora forest is predicted to increase from $131m^3/ha$ at present to $212.42m^3/ha$ in the year of 2050. If the climate maintains as the present, volume is predicted to increase to $221.92m^3/ha$. With the climate change, it is predicted that most of the region, except for some of the alpine region, will have a decrease in growth rate of Pinus densiflora forest. The growth rate of Pinus densiflora forest will have a greater decline, especially in the coastal area and the southern area. With the result of this study, it will be possible to quantify the effect of climate change on the growth of Pinus densiflora forest according to spatio-temporal is possible. The result of the study can be useful in establishing the forest management practices, considering the adaptation of climate change.

Assessment of Productive Areas for Quercus acutissima by Ecoprovince in Korea Using Environmental Factors (환경요인을 이용한 생태권역별 상수리나무의 적지판정)

  • Kim, Tae U;Sung, Joo Han;Kwon, Tae-Sung;Chun, Jung Hwa;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.437-445
    • /
    • 2013
  • This study was conducted to develop site index equations and to estimate productive areas of Quercus acutissima by ecoprovince in Korea using environmental factors. Using the large data set from both a digital forest site map and a climatic map, a total of 48 environmental factors including 19 climatic variables were regressed on site index to develop site index equations. Four to six environmental factors for Quercus acutissima by ecoprovince were selected as independent variables in the final site index equations. The result showed that the coefficients of determination for site index equations were ranged from 0.30 to 0.41, which seem to be relatively low but good enough for the estimation of forest stand productivity. The site index equations developed in this study were also verified by three evaluation statistics such as the estimation bias of model, precision of model, and mean square error of measurement. According to the evaluation statistics, it was found that the site index equations fitted well to the test data sets with relatively low bias and variation. As a result, it was concluded that the site index equations were well capable of estimating site quality. Based on the site index equations of Quercus acutissima by ecoprovince, the productive areas by ecoprovince were estimated by applying GIS technique to the digital forest site map and climate map. In addition, the distribution of productive areas by ecoprovince was illustrated by using GIS technique.

Geographic Information Systems(GIS) Use in Forest Pest Management : A Simulated Study on Mountain Pine Beetle Infestation (지리정보(地理情報)시스템(GIS) 이용(利用)과 산림(山林) 병충해(病蟲害) 관리(管理) : 소나무 좀벌레의 모형적(模型的) 예(例))

  • Lee, Kyu Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.2
    • /
    • pp.168-176
    • /
    • 1989
  • Recent development of geographic information systems(GIS) provides a great deal of potential in handling a variety of spatial data required by forest resource managers. This study is designed to identify a possible GIS application in forest pest management. Several mountain pine beetle risk assessment parameters(stand characteristics, weather conditions, and topographic factor) were spatially analyzed through computer map overlaying operations in order to estimate the hazard level of the pest damage. In addition, the expected infestation route from an initially infected forest stand was located through further may analysis operations(distance measurement and connectivity analysis). Although current GIS technology may have a few limitations in operational situations, the computer based GIS has been proven as an invaluable tool to resource managers by providing flexible spatial data handing capabilities.

  • PDF

Development of Site Index Equations and Assessment of Productive Areas Based on Environmental Factors for Major Coniferous Tree Species (환경요인에 의한 주요 침엽수종의 지위지수 추정식 개발과 적지 평가)

  • Lee, Yong Seok;Sung, Joo Han;Chun, Jung Hwa;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.395-404
    • /
    • 2012
  • This study was conducted to develop site index equations and to estimate productive areas for major coniferous species in Korea such as Pinus densiflora Sieb. et. Zucc, Pinus densiflora for. erect, Larix leptolepis and Pinus koraiensis using environmental factors. Using the large data set from both a digital forest site map and a climatic map, a total of 43 environmental factors including 15 climatic variables were regressed on site index by tree species to develop site index equations. Six environmental factors by species were selected as independent variables in the final site index equations. The result showed that the coefficients of determination for site index equations by species were ranged from 0.36 to 0.56, which seem to be relatively low but good enough for the estimation of forest stand productivity. The site index equations developed in this study were also verified by three evaluation statistics such as the estimation bias of model, precision of model, and mean square error of measurement. According to the evaluation statistics, it was found that the site index equations by species fitted well to the test data sets with relatively low bias and variation. As a result, it was concluded that the site index equations by species were well capable of estimating site quality. Based on the site index equations, the productive areas by species for all forest areas were estimated by applying GIS technique to the digital forest site map and climate map. In addition, the distribution of productive areas by species was illustrated by using GIS technique.