• Title/Summary/Keyword: forest ecosystem

Search Result 905, Processing Time 0.027 seconds

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

Relationship between Damage by Herbivore and Leaf Production of Oaks in the Burnt Area of the East Coastal Region, Korea (동해안의 산불피해지역에서 참나무 잎 생산량과 초식 피해의 관계)

  • Lee, Kyoung Sin;Hong, Bo Ram;Lee, Kyu Song
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.206-216
    • /
    • 2018
  • We analyzed the effects of spatio-temporal variation in the leaf production of oaks on the density and species richness of herbivores, as well as the consumption by herbivores in the east coastal region of Korea, which is an area that has been damaged by forest fires. The main herbivore that feeds on oak leaves was moth larvae. In mid-August the insect larvae showed the highest density and species richness. Approximately 60.5% of total plant-eating insect larvae were present from August to September 2011. Oak leaf production was at its peak from July to August, and the peak damage caused by herbivores was from August to September. Depending on the investigation timing and site of the survey, oak leaf production, larval densities, and species richness showed large variations. The average production of oak leaves between July and August was estimated to be $0.96ton\;ha^{-1}$. The production of oak leaves during this period also showed spatial variations ranging from 0.34 to $1.89ton\;ha^{-1}$. In August, the consumption of oak leaves by the herbivores showed spatial variations ranging from 0.15 to $1.51ton\;ha^{-1}$. Where oak leaves had a higher yield, they tended to increase in density and species richness of the herbivores. As the production of oak leaves increased, so did the overall consumption and consumption rate by the herbivores. This means that the production of oak leaves is highly related to time and space, and there is a concentration response in which the new individuals gather. Research into the spatio-temporal heterogeneity of the food sources and their effects on the higher levels of the food web can help us quantitatively understand and evaluate the structure and functions of the burnt ecosystem that is caused by forest fires.

Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia (동아시아 지역의 플럭스 타워 관측지에 대한 MODIS 위성영상 기반의 증발산 평가)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Kang, Sin-Kyu;Kim, Joon;Kondo, Hiroaki;Gamo, Minoru;Asanuma, Jun;Saigusa, Nobuko;Wang, Shaoqiang;Han, Shijie
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.174-184
    • /
    • 2009
  • Evapotranspiration (ET) is one of the major hydrologic processes in terrestrial ecosystems. A reliable estimation of spatially representavtive ET is necessary for deriving regional water budget, primary productivity of vegetation, and feedbacks of land surface to regional climate. Moderate resolution imaging spectroradiometer (MODIS) provides an opportunity to monitor ET for wide area at daily time scale. In this study, we applied a MODIS-based ET algorithm and tested its reliability for nine flux tower sites in East Asia. This is a stand-alone MODIS algorithm based on the Penman-Monteith equation and uses input data derived from MODIS. Instantaneous ET was estimated and scaled up to daily ET. For six flux sites, the MODIS-derived instantaneous ET showed a good agreement with the measured data ($r^2=0.38$ to 0.73, ME = -44 to $+31W\;m^{-2}$, RMSE =48 to $111W\;m^{-2}$). However, for the other three sites, a poor agreement was observed. The predictability of MODIS ET was improved when the up-scaled daily ET was used ($r^2\;=\;0.48$ to 0.89, ME = -0.7 to $-0.6\;mm\;day^{-1}$, $RMSE=\;0.5{\sim}1.1\;mm\;day^{-1}$). Errors in the canopy conductance were identified as a primary factor of uncertainty in MODIS-derived ET and hence, a more reliable estimation of canopy conductance is necessary to increase the accuracy of MODIS ET.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

A Research on the Special Characteristics of the Changes of the Vegetations in the World Cup Park Landfill Slope District (월드컵공원 사면지구 식생현황 및 변화 특성 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Choi, Han-Byeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.4
    • /
    • pp.1-15
    • /
    • 2023
  • This research intended to reveal the special characteristics of the vegetation structure and the tendency of change of -landfill slope districts, which are reclaimed land, through an investigationsinto the presently existent vegetation and plant community structure of the World Cup Park landfill slope district. For the analysis of changes in vegetation, this study compared the results of field surveys in 1999, 2003, 2005, 2007, 2008, 2012, 2016, and 2021. For the investigation into the plant community structure, a field investigation was carried out in 2021 with six fixed investigation districts designated in 1999 as subjects. To analyze the change in the plant community structure, the past data on the population, the number of the species, and the species diversity by the layer in 2021 were compared and analyzed in the landfill slope district, which is reclaimed land. The changes of the vegetation distribution and the power had been affected by typhoons (Kompasu). Above the plantation foundation, which had been dry and poor, Salix koreensis, marsh woody plants that had formed the community, decreased greatly. The Robinia pseudoacacia community, after the typhoon in 2010, decreased in the number of species and population. Afterward, it showed a tendency to rebound. Regarding the Ailanthus altissima-Robinia pseudoacacia-Paulownia tomentosa community, the number of the species and the population had shown a change similar to the Robinia pseudoacacia community. The Paulownia tomentosa and the Ailanthus altissima have been culled. The slope was predicted as a Future Robinia pseudoacacia forest. The Salix pseudolasiogyne community has been transitioning to a Robinia pseudoacacia forest. Only some enumeration districts, the Robinia pseudoacacia forests and the Salix pseudolasiogyne, had been growing. However, most had been in been declining. It was predicted that this community will be maintained as a Robinia pseudoacacia forest in the future. As these vegetation communities are the representative vegetation of the landfill slope districts, which is reclaimed land, there is a need to understand the ecosystem changes of the community through continuous monitoring. The results of this research can be utilized as a basic material for the vegetation restoration of reclaimed land.

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.

Abundance and Occupancy of Forest Mammals at Mijiang Area in the Lower Tumen River (두만강 하류 밀강 지역의 산림성 포유류 풍부도와 점유율)

  • Hai-Long Li;Chang-Yong Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.429-438
    • /
    • 2023
  • The forest in the lower Tumen River serves as an important ecosystem spanning the territories of North Korea, Russia, and China, and it provides habitat and movement corridors for diverse mammals, including the endangered Amur tiger (Panthera tigris) and Amur leopard (Panthera pardus). This study focuses on the Mijiang area, situated as a potential ecological corridor connecting North Korea and China in the lower Tumen River, playing a crucial role in conserving and restoring the biodiversity of the Korean Peninsula. This study aimed to identify mammal species and estimate their relative abundance, occupancy, and distribution based on the 48 camera traps installed in the Mijiang area from May 2019 to May 2021. The results confirmed the presence of 18 mammal species in the Mijiang area, including large carnivores like tigers and leopards. Among the dominant mammals, four species of ungulates showed high occupancy and detection rates, particularly the Roe deer (Capreolus pygargus) and Wild boar (Sus scrofa). The roe deer was distributed across all areas with a predicted high occupancy rate of 0.97, influenced by altitude, urban residential areas, and patch density. Wild boars showed a predicted occupancy rate of 0.73 and were distributed throughout the entire area, with factors such as wetland ratio, grazing intensity, and spatial heterogeneity in aspects of the landscape influencing their occupancy and detection rates. Sika deer (Cervus nippon) exhibited a predicted occupancy rate of 0.48, confined to specific areas, influenced by slope, habitat fragmentation diversity affecting detection rates, and the ratio of open forests impacting occupancy. Water deer (Hydropotes inermis) displayed a very low occupancy rate of 0.06 along the Tumen River Basin, with higher occupancy in lower altitude areas and increased detection in locations with high spatial heterogeneity in aspects. This study confirmed that the Mijiang area serves as a habitat supporting diverse mammals in the lower Tumen River while also playing a crucial role in facilitating animal movement and habitat connectivity. Additionally, the occupancy prediction model developed in this study is expected to contribute to predicting mammal distribution within the disrupted Tumen River basin due to human interference and identifying and protecting potential ecological corridors in this transboundary region.

The Planting and Occurrence Status of Exotic Plants of the Folk Village as National Cultural Heritage - Focus in Hahoe.Yangdong.Hangae Villages - (국가지정 문화재 민속마을의 외래식물 식재 및 발생현황 - 하회.양동.한개마을을 대상으로 -)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Han, Yun-Hee;Park, Kyung-Uk;Byun, Moo-Sup;Huh, Joon;Choi, Yung-Hyun;Shin, Sang-Sup;Lee, Hyun-Woo;Kim, Hyo-Jung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.1-19
    • /
    • 2013
  • This study was carried out to analyze distribution situation of alien plants and to propose management plan in the 3 Folk village in Gyeongsangbuk-do which is Cultural property designated by the State; Hahoe, Yangdong and Hangae. This research is for improve of sincerity of historical site and provide basic information which use about administration of preservation. The results are as follows. 1. Overall flora and alien plants appearance The total flora in the 3 folk villages were listed total 752 taxa including 127 families, 430 genera, 614 species, 5 subspecies, 100 varieties and 33 forms. Among them, woody plants take 263 taxa(35.0%) and herbaceous plants take 489 taxa (65.0%). Flora in the Hahoe, Yangdong and Hangae village were total 534, 479 taxa and 408 taxa and exotic plant index was 30.1%, 38.2% and 37.0% respectively. In types of exotic plants, ornamental exotic plants were 135 taxa, deciduous exotic plants were 21 taxa, cultivating exotic plants were 64 taxa, and naturalized exotic plants were 80 taxa and those result lead that the ornamental exotic plants is the highest ratio. According to the villages, Hahoe village had 161 taxa(30.1%), Yangdong Village had 183 taxa(38.2%), and Hangae village had 151 taxa(37.0%) that Yangdong village showed the most number of exotic plants. 2. Planting of landscape exotic plants in the unit cultural assets Meanwhile, Ornamental exotic plants in old house's gardens in Andong Hahoe village which is designated as a unit assets, those are total 30 taxa; followed by the Okyeon house(8 taxa) is highest and the Yangjindang(7), the Hadong house(6) and the Chunghyodang(5). Magnolia denudata appears the most as for 4 times and Campsis grandiflora etc. each took 2 times. Based on the Yangdong village, Gyeongju, that are found total 51 taxa; followed by the Dugok house(16 taxa) the Sujoldang(14), the Mucheondang(13), and the Sangchunheon (12). High appearance rate of ornamental exotic plants were Viburnum opulus for. hydrangeoides, Lycoris squamigera, Caragagna sinica and Magnolia denudata etc. Based on the Hangae village, Seongju, that are designated total 62 taxa; followed by the Jinsa house(35 taxa), the Gyori house(25), the Hanju head family house(20), and the Hahoe house(16). Taxa with high appearance rates were Caragana sinica, Juniperus chinensis var. horizontalis, Magnolia denudata, Viburnum opulus for. hydrangeoides, Chaenomeles speciosa etc. 3. Problems of exotic plant landscapes in the outer spaces of the folk villages Problems of exotic plant landscapes in the outer spaces of the Hahoe village are as follows. In lower of the Mansongjeong forest, Ambrosia artemisifolia, which are ecosystem disturbance plants designated by the Ministry of Environment, live with high dominance value. This should be have a remove with Sicyos angulatus immediately. In the Nakdong river bed around the Mansongjeong forest is covered with a riparian vegetation forest belt of Robinia pseudoacacia L. forest, Populus nigra var. italic community, and Populus x tomentiglandulosa community colony. Based on the Yangdong village, the planted or naturally distributed Ailanthus altissima colony, sporadically distributed Robinia pseudoacacia as well as Amorpha fruticosa are detected all over the village and ecotones. Based on the Hangae village, Ailanthus altissima and Robinia pseudoacacia are sporadically distributed around the village and there is a sign of spreading. similarity of exotic plantsis 47.0% to 48.6% and a reason why this happened is all of research site in Gyeongsanbuk-do and that is why growth norm of plant is similar, exotic plant which is sales for ornamental and it infer to require related countermeasure of each villages and joint related countermeasure.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.

Study on the Influence of Waterbirds Distribution According to the Restoration of Intertidal Zone (조간대 복원이 수조류의 분포에 미치는 영향)

  • Park, Chi-Young;Shin, Man-Seok;Kim, Ho-Joon;Paek, Woon-Kee;Lee, Joon-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.5
    • /
    • pp.837-847
    • /
    • 2016
  • In this study, the bird fauna of Sihwa Lake in Gyeonggi Province were investigated from 2009 to 2014 to identify the effect of the restored intertidal zone on bird community. Based upon the analysis of the habitat status and distribution change of water birds in the intertidal zone, the following conclusions were obtained. The number of water bird individuals increased by approx. 40 thousand after the restoration. Most of water bird species increased, but diving ducks decreased. Analysis of the number of individuals of water birds before and after the intertidal zone restoration showed that there was a significant increase in the number of shorebird individuals. There is a habitat use pattern change in the southern tideland intertidal zone that includes the largest area of widened intertidal zone and the inland waters of the intertidal zone. This is related to the change of benthic ecosystem which is the food source of birds. The benthic ecosystem in restoring Sihwa Lake has been stabilized with a decrease in opportunistic species and consistent increase in equilibrium species that are sensitive to pollution. As a result, the environmental conditions for shorebirds have been improved. The restoration of intertidal zone affected the habitat use and distribution patterns of water birds in a short period of time. Compared to before restoration, all the water birds now use the wide area of the intertidal zone with no partiality and it is confirmed that the restoration greatly affected the distribution of shorebirds and swan & geese. This study was conduced to identify the effects of an artificial restoration of intertidal zone due to tidal power generation of bird species. In terms of maintaining and improving biodiversity, the intertidal zone restoration was recognized to be important and still shows positive results. This study is expected to provide a direction when an alternative is required to maintain and improve biodiversity in a similar situation in the future.