• Title/Summary/Keyword: forest communities

Search Result 725, Processing Time 0.041 seconds

Multivariate Analysis on Invertebrate Communities in Litter and Soils of Japanese Red Pine Forests treated by Beauveria bassiana (백강균(白殭菌)을 처리(處理)한 소나무림의 낙엽(落葉)과 토양(土壤)에 서식(棲息)하는 무척주동물(無脊柱動物) 군집(群集)에 대한 다변량분석(多變量分析))

  • Kwon, Tae-Sung;Park, Young-Seuk;Shin, Sang-Chul;Lee, Buom-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.5
    • /
    • pp.593-599
    • /
    • 2001
  • We tested if the treatment of Beauveria bassiana would influence invertebrate communities in litter and soils by multivariate analysis. The PCA (principal components analysis) was used for the analysis. Using the distances between communities in the ordination space, we carried out statistical tests whether any factors would influence structures of the communities. We did not found any significant effects of the Beauveria treatment on invertebrate communities in both litter and soils.

  • PDF

Community Distribution on Forest Vegetation of the Hyangjeokbong in the Deogyusan National Park (덕유산 국립공원 향적봉 일대 삼림식생의 군락분포에 관한 연구)

  • Choi, Young-Eun;Oh, Jang-Geun;Kim, Chang-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.289-300
    • /
    • 2013
  • Forest vegetation of Hyangjeokbong (1,614 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, subalpine coniferous forest, shrub forest, grassland forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 122 communities of mountain forest vegetation and 2 communities of riparian forest, the total of 124 communities were researched; the distributed colonies classified by physiognomy classification are 42 communities deciduous broad-leaved forest, 37 communities of valley forest, 8 communities of coniferous forests, 6 communities of subalpine coniferous forest, 3 communities of shrub forest, 1 communities of grassland forest, 21 afforestation and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 47.02 percent of deciduous broad-leaved forest, Fraxinus mandshurica community takes up 57.48 percent of mountain valley forest, Pinus densiflora community holds 77.53 percent of mountain coniferous forest holds, and Taxus cuspidate-Abies koreana community takes up about 50 percent of subalpine coniferous forest. Mountain shrub forest and mountain grassland forest vegetation are concentrated mainly on the top of Hyangjeokbong and the ridge connecting the top and Jungbong. Meanwhile, riparian forest vegetation comprises 0.024% of the whole vegetation area in a study area. In conclusion, minority species consisting of Quercus mongolica, Quercus serrata, Quercus variabilis, Fraxinus mandshurica, Cornus controversa, Pinus densiflora, Abies koreana and Taxus cuspidata are distributed as dominant species of the uppermost part in a forest vegetation region in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area. However, in respect of subalpine coniferous forest, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

A Study on the Vulnerability Assessment of Forest Vegetation using Regional Climate Model (지역기후모형을 이용한 산림식생의 취약성 평가에 관한 연구)

  • Kim, Jae-Uk;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.32-40
    • /
    • 2006
  • This study's objects are to suggest effective forest community-level management measures by identifying the vulnerable forest vegetation communities types to climate change through a comparative analysis with present forest communities identified and delineated in the Actual Vegetation Map. The methods of this study are to classify the climatic life zones based on the correlative climate-vegetation relationship for each forest vegetation community, the Holdridge Bio-Climate Model was employed. This study confirms relationship between forest vegetation and environmental factors using Pearson's correlation coefficient analysis. Then, the future distribution of forest vegetation are predicted derived factors and present distribution of vegetation by utilizing the multinomial logit model. The vulnerability of forest to climate change was evaluated by identifying the forest community shifts slower than the average velocity of forest moving (VFM) for woody plants, which is assumed to be 0.25 kilometers per year. The major findings in this study are as follows : First, the result of correlative analysis shows that summer precipitation, mean temperature of the coldest month, elevation, soil organic matter contents, and soil acidity (pH) are highly influencing factors to the distribution of forest vegetation. Secondly, the result of the vulnerability assessment employing the assumed velocity of forest moving for woody plants (0.25kmjyear) shows that 54.82% of the forest turned out to be vulnerable to climate change. The sub-alpine vegetations in regions around Mount Jiri and Mount Seorak are predicted to shift the dominance toward Quercus mongolica and Pinus densiflora communities. In the identified vulnerable areas centering the southern and eastern coastal regions, about 8.27% of the Pinus densiflora communities is likely to shift to sub-tropical forest communities, and 3.38% of the Quercus mongolica communities is likely to shift toward Quercus acutissima communities. In the vulnerable areas scattered throughout the country, about 8.84% of the Quercus mongolica communities is likely to shift toward Pinus densiflora communities due to the effects of climate change. The study findings concluded that challenges associated with predicting the future climate using RCM and the assessment of the future vulnerabilities of forest vegetations to climate change are significant.

Forest Community Structure of Mt. Bukhan Area (북한산 지역의 삼림군집구조에 관한 연구)

  • 박인협;이경재;조재창
    • Korean Journal of Environment and Ecology
    • /
    • v.1 no.1
    • /
    • pp.1-23
    • /
    • 1987
  • To investigate the forest structure of Mt. Bukhan. ranging from Seoul to Kyongkido, twenty plots were set up by the vegetation physiognomy and vegetation analysis was carried out. According to the leading dominant tree species in canopy stratum, forest communities were classified into three large groups of natural forest communities, semi-natural forest communities and artificial forest communities, and each of them covered 82.64, 7.03, and 5.71% of Mt. Bukhan area, respectively. Pure or mixed natural forest communities of Pinus densiflora and Quercus mongolica were major forest communities and covered 70.8% of Mt. Bukhan area. The important planted tree species were Robinia pseudoacacia, Pinus rigida, and Alnus birsuta and they were mainly planted at the southern slope and roadside. The degree of human disturbance of vegetation of 8, 7, and 6 area covered 82.64, 0, and 12.74%, respectively. According to forest dimensions, most of forest communities were young aged forests of which mean DBH was 20cm and canopy height below 10m. However, a few mature forest communities of Pinus densiflora or Quercus mongolica were found in the small area. The range of Shannon's species diversity of major natural forest communities, pure or mixed forest communities of Pinus densiflora and Quercus mongolica was 1.085~1.242. According to stand dynamic analysis by DBH class distribution, the present Quercus mongolica communities arid Robinia pseudoacacia communities may last long their present forest structure and most of other communities may be succeeded to Quercus mongolica communities, however, a few communities invaded by Robinia pseudoacacia and Quercus aliena-Quercus acutissima communities may be succeeded to Robinia pseudoacacia communities and Quercus aliena communities, respectively. DCA was the most effective method of this study. DCA ordination were showed that successional trends of tree species seem to be from Pinus densiflora through Quercus serrata. Prunus sargrntii. Sorbus alnifolia to Q. mongolica. Fraxinus mandsburica, F. rhynchophylla in the upper layer and from Zanthoxylum schinifolium, Lespedeza crytobotrya trough Rhus trichocarpa. Rh. verniciflua. Rhododendron mucronulatum. Rh. schlippenbachii to Acer pseudo-sieboldianus. Magnolia sieboldii, Euonymus sieboldianus.

  • PDF

Community Distribution on Mountain Forest Vegetation of the Choksangsan Area in the Deogyusan National Park, Korea (덕유산 국립공원 적상산 일대 삼림식생의 군락분포에 관한 연구)

  • Choi, Young-Eun;Kim, Chang-Hwan;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.460-470
    • /
    • 2013
  • Forest vegetation of Choksangsan area in the Deogyusan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, afforestation and other vegetation. Including 103 communities of mountain forest vegetation and 8 communities of other vegetation, the total of 111 communities were researched; the mountain forest vegetation classified by physiognomy classification are 36 communities deciduous broad-leaved forest, 26 communities of valley forest, 10 communities of coniferous forests, 31 plantation and 8 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus variabilis communities account for 65.96 percent of deciduous broad-leaved forest, Fraxinus mandshurica community takes up 22.50 percent of mountain valley forest, Pinus densiflora community holds 63.27 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Fraxinus mandshurica, Quercus serrata, Pinus densiflora, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation of Choksangsan in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.

The vertical distribution of the vegetation on Mt. Hanla (한라산 식물의 수직분포)

  • 차종환
    • Journal of Plant Biology
    • /
    • v.12 no.4
    • /
    • pp.19-29
    • /
    • 1969
  • This study investigated the vertical distribution of the vegetation in Mt. Hanla of Quelpart Island from 1967 to 1969. According to the physiognomy and life form of plants, the following plant communities are observed and arranged tentatively from the foot to the top. A. North-facing slope. (1) Grass land(0∼600m) (2) Deciduous broad-leaved forest(600∼1200m) (3) Mixed forest(broad and needle leaved forest : 1200∼1300m) (4) Evergreen coniferous forest(1300∼1700m) (5) Scrub communities(1700∼1950m) B. South-facing slope. (1) Grass land(0∼700) (2) Deciduous broad-leaved forest(700∼1300m) (3) Mixed forest(1300∼1550m) (4) Evergreen coniferous forest (1550∼850m) (5) Scrub communities(1850∼1950m) D. West-facing slope. (1) Grass land(0∼650) (2) Deciduous brod-leaved forest(650∼1400m) (3) Mixed forest(1400∼1500m) (4) Evergreen coniferous forest(1500∼1750m) (5) Scrub communities(1750∼1950m) The relation of the geological map and vegetation are as follows: (1) In the region of lava of Mt. Hanla are mainly distribut4ed deciduous broad-leaved forest. (2) In the region of Mt. Hanla are mainly distributed scrub. (3) In the region of lava of Gogun-san are involved deciduous broad-leaved forest, scrub and grass land of Gaimi-Dung.

  • PDF

Community Distribution on Mountain Forest Vegetation of the Birobong Area in the Odaesan National Park, Korea (오대산 국립공원 비로봉 일대 산지 삼림식생의 군락분포에 관한 연구)

  • Choi, Young-Eun;Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.91-102
    • /
    • 2014
  • Forest vegetation of Birobong (1,563 m) in Odaesan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, subalpine coniferous forest, subalpine broad-leaved forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 196 communities of mountain forest vegetation, 1 community of flatland forest vegetation and 4 communities of other vegetation, the total of 201 communities were researched; the distributed colonies classified by physiognomy classification are 62 communities deciduous broad-leaved forest, 84 communities of valley forest, 15 communities of coniferous forests, 16 communities of subalpine coniferous forest, 3 communities of subalpine broad-leaved forest, 16 afforestation, 1 community of flatland forest and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus variabilis, Tilia amurensis communities account for 37.08 percent of deciduous broad-leaved forest, Juglans mandshurica, Fraxinus mandshurica, Cornus controversa, Populus koreana community takes up 1.59 percent of mountain valley forest, Pinus densiflora community holds 6.65 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Quercus variabilis, Tilia amurensis, Juglans mandshurica, Fraxinus mandshurica, Cornus controversa, Populus koreana, Pinus densiflora are distributed as dominant species of the uppermost part in a forest vegetation of Birobong in Odaesan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Tilia amurensis and Juglans mandshurica which are climax species in the area. However, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

Characteristics of Breeding Bird Communities in Mt. Namsan, Seoul, Korea

  • Rhim, Shin-Jae;Lee, Ju-Young;Kang, Jeong-Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.580-584
    • /
    • 2006
  • This study was conducted to clarify the characteristics of breeding bird communities between deciduous and coniferous forests from April to June 2005 in Mt. Namsan, Seoul, Korea. Two 10ha areas were selected for territory mapping of breeding bird communities. Number of breeding bird species, pairs,density and bird species diversity index were higher in deciduous forest with increasing amount of foliage in the forest profile or as forest structures developed compared with coniferous forest. The number of in coniferous forest. The differences in habitat structure between both study areas are very likely to have influenced how breeding birds used the available habitat. Forest structure and its interactions with birds should be consideration in forest management for birds and their habitat.

Community Distribution on Mountain Forest Vegetation of the Noinbong Area in the Odaesan National Park, Korea (오대산 국립공원 노인봉 일대 삼림식생의 군락분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Kang, Eun-Ok;Choi, Young-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.103-115
    • /
    • 2014
  • Forest vegetation of Noinbong (1,338 m) in Odaesan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, subalpine coniferous forest, subalpine deciduous forest, shrub forest, riparian forest, afforestation and other vegetation. Including 196 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 203 communities were researched; mountain forest vegetation classified by physiognomy classification are 62 communities deciduous broad-leaved forest, 85 communities of mountain valley forest, 18 communities of coniferous forests, 3 communities of subalpine coniferous forests, 4 communities of subapine deciduous forests, 2 communities of shrub forests, 1 communities of riparian forests, 21 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 54.856 percent of deciduous broad-leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 15.482 percent of mountain valley forest, Pinus densiflora community holds 78.091 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Tilia amurensis, Fraxinus mandshurica, Cornus controversa, Quercus serrata, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation region in Odaesan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.

Effects of Clear-cutting on Forest Arthropod Communities at Two Different Vertical Levels (Crown and Ground Surface) (산림 벌채가 산림의 수관 및 지표 절지동물 군집에 미치는 영향)

  • Park, Young-Seuk;Park, Young Kyu;Yang, Hee Moon
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • Forest clear-cutting operations influence biodiversity through habitat changes and food resource availability for inhabitant species. This study examined the effects of clear-cutting on forest arthropod communities. Arthropods were collected from two different forest treatment areas (clear-cut and control) in summer and autumn. In each treatment area, arthropods were sampled from both crown and ground surfaces using sweeping and pitfall trap methods, respectively. Then, the taxonomic order of the collected arthropod specimens was easily identified. Results indicate that arthropod abundance and number of taxa present were higher at ground surface than at crown levels in both clear-cut and control areas. At crown level, more homopteran species were present in clear-cut areas than in control areas in summer. At ground surface, populations of Isopoda and Opiliones were higher in control areas than in clear-cut areas, whereas numbers of Araneae, Orthoptera, and Hymenoptera were greater in clear-cut areas. Cluster analysis and principal component analysis showed distinct differences between clear-cut and control communities at crown level in summer and at ground surface in autumn. Thus, our results indicate that clear-cutting significantly influences arthropod communities, and higher taxa are valuable for conducting rapid biological assessments of ecosystem disturbances.