• Title/Summary/Keyword: forecasting system

Search Result 1,552, Processing Time 0.029 seconds

Assessment of the Forecasting Studies on 12 Traditional Korean Medicine Policy Realization (12개 미래 예측 한의약 정책 과제의 실현 평가 연구)

  • Park, Ju-Young;Shin, Hyeun-Kyoo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.65-76
    • /
    • 2013
  • Objectives : Aim of this study is to contribute to establishment of the Traditional Korean Medicine (TKM) policies in the future. Final assessment for 12 of the forecasting projects was carried out on the TKM policies that deduced by professionals in 1996 whether or not to realize in 2013. Methods : We investigated governmental and private research projects, reports and papers, and laws and systems on the forecasting projects. We reviewed them through the Traditional Korean Medicine Information Portal OASIS (http://oasis.kiom.re.kr), Korean studies Information Service System (KISS) (http://kiss.kstudy.com/) and DBpia (http://www.dbpia.co.kr/), Akomnews(http://www.akomnews.com/), THE MINJOK MEDICINE NEWS(http://www.mjmedi.com/), Ministry of Government Legislation(http://www.law.go.kr/). Results : Of the 12 forecasting projects, five were judged as 'realization', four were as 'partial realization' and three were as 'un-realization', The realization rate was 75.0%. Three un-realized projects included the TKM insurance coverage for various herbal medicines, leadership secure on medical technicians and commercialization of the TKM managing system on senior medicare policy. Realization of the future forecasting TKM policy projects was decided depending on conditions such as the importance, domestic capability levels, principal agents, methods and restrains. Conclusions : Continuous studies and new developed forecasting projects for the TKM policies will be required to realize the projects in the future.

Development of typhoon forecasting system using satellite data

  • Ryu, Seung-Ah;Chung, Hyo-Sang;Lee, Yong-Seob;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.127-131
    • /
    • 1999
  • Typhoons were known by contributing to transporting plus heat or kinetic energy from equatorial region to midlatitude region. Due to the strong damage from typhoon, we acknowledged the theoretical study and the importance of accurate forecast about typhoon. In this study, typhoon forecasting system was developed to search the tracks of past typhoons or to display similar track of past typhoon in comparison with the path of current forecasting typhoon. It was programmed using Interactive Data Language(IDL), which was a complete computing environment for the interactive analysis and visualization of data. Typhoon forecasting system was also included satellite image and auxiliary chart. IR, Water Vapor, Visible satellite images helped users analyze an accurate forecast of typhoon. They were further refined the procedures for generating water vapor winds and gave an initial indication of their utility for numerical weather prediction(NWP), in particular for typhoon track forecasting where they could provide important information. They were also available for its utility in typhoon tracer or intensity.

  • PDF

A Hybrid Neural Network Framework for Hour-Ahead System Marginal Price Forecasting (하이브리드 신경회로망을 이용한 한시간전 계통한계가격 예측)

  • Jeong, Sang-Yun;Lee, Jeong-Kyu;Park, Jong-Bae;Shin, Joong-Rin;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.162-164
    • /
    • 2005
  • This paper presents an hour-ahead System Marginal Price (SMP) forecasting framework based on a neural network. Recently, the deregulation in power industries has impacted on the power system operational problems. The bidding strategy of market participants in energy market is highly dependent on the short-term price levels. Therefore, short-term SMP forecasting is a very important issue to market participants to maximize their profits. and to market operator who may wish to operate the electricity market in a stable sense. The proposed hybrid neural network is composed of tow parts. First part of this scheme is pattern classification to input data using Kohonen Self-Organizing Map (SOM) and the second part is SMP forecasting using back-propagation neural network that has three layers. This paper compares the forecasting results using classified input data and unclassified input data. The proposed technique is trained, validated and tested with historical date of Korea Power Exchange (KPX) in 2002.

  • PDF

Comparison of Price Predictive Ability between Futures Market and Expert System for WTI Crude Oil Price (선물시장과 전문가예측시스템의 가격예측력 비교 - WTI 원유가격을 대상으로 -)

  • Yun, Won-Cheol
    • Environmental and Resource Economics Review
    • /
    • v.14 no.1
    • /
    • pp.201-220
    • /
    • 2005
  • Recently, we have been witnessing new records of crude oil price hikes. One question which naturally arises would be the possibility and accuracy of forecasting crude oil prices. This study tries to answer the relative predictability of futures prices compared to the forecasts based on experts system. Using WTI crude oil spot and futures prices, this study performs simple statistical comparisons in forecasting accuracy and a formal test of differences in forecasting errors. According to statistical results, WTI crude oil futures market turns out to be equally efficient relative to EIA experts system. Consequently, WTI crude oil futures market could be utilized as a market-based tool for price forecasting and/or resource allocation for both of petroleum producers and consumers.

  • PDF

A Development of a Forecasting System of Textile Design Based on Consumer Emotion(II) - Database Construction for Textile Design - (소비자 감성에 기반한 텍스타일디자인 예측시스템 개발(II) - 텍스타일디자인 데이터베이스 구축 -)

  • Cho, Hyun-Seung;Lee, Joo-Hyeon
    • Fashion & Textile Research Journal
    • /
    • v.7 no.2
    • /
    • pp.196-202
    • /
    • 2005
  • The purposes of this study were to investigate and analyze the relationship between the elements of textile design and consumer emotion and to suggest effective design methods. In addition, the forecasting system for textile design based on the results of this study was developed. The database system of textile design was organized by installing Mysql database server and tomcat servlet container on windows NT. The user interface was utilized using jsp on the web. This study findings can provide textile design samples which were suitable for each emotional factor, and an evaluation basis for each design element by the descriptive system of textile design. The forecasting system based on this study findings can also provide specific design methods for the effectiveness of consumer emotion and can be applied in a practical design process. This study based on the results of the quantitative analysis on consumer emotion has presented an objective and an efficient design method. This will be a useful expedient to improve the existing textile design process and for the consumer design.

Operation Scheme to Regulate the Active Power Output and to Improve the Forecasting of Output Range in Wind Turbine and Fuel-Cell Hybrid System (출력변동 저감 및 출력범위 예측 향상을 위한 풍력-연료전지 하이브리드 시스템의 운영방법)

  • Kim, Yun-Seong;Moon, Dae-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.531-538
    • /
    • 2009
  • The paper deals with an operation scheme to improve the forecasting of output range and to regulate the active power output of the hybrid system consisting of a doubly fed induction generator (DFIG) and a fuel-cell. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. The power fluctuation of a DFIG makes its operation difficult when a DFIG is connected to grid. A fuel cell system can be individually operated and adjusted output power, hence the wind turbine and fuel cell hybrid system can overcome power fluctuation by using a fuel-cell power control. In this paper, a fuel-cell is performed to regulate the active power output in comparison with the regulated active power output of a DFIG. And it also improves the forecasting of output range. Based on PSCAD/EMTDC tools, a DFIG and a proton exchange membrane fuel cell(PEMFC) is simulated and the dynamics of the output power in hybrid system are investigated.

A Development of Real-time Flood Forecasting System for U-City (Ubiquitous 환경의 U-City 홍수예측시스템 개발)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-184
    • /
    • 2007
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. Wireless sensors such as rainfall gauge and water lever gauge are installed to develop hydrologic forecasting model and CCTV camera systems are also incorporated to capture high definition images of river basins. U-FFS is based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) that is data-driven model and is characterized by its accuracy and adaptability. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. It is revealed that U-FFS can predict the water level of 30 minutes and 1 hour later very accurately. Unlike other hydrologic forecasting model, this newly developed U-FFS has advantages such as its applicability and feasibility. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (U-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Development of Electric Load Forecasting System Using Neural Network (신경회로망을 이용한 단기전력부하 예측용 시스템 개발)

  • Kim, H.S.;Mun, K.J.;Hwang, G.H.;Park, J.H.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1522-1522
    • /
    • 1999
  • This paper proposes the methods of short-term load forecasting using Kohonen neural networks and back-propagation neural networks. Historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Normal days and holidays are forecasted. For load forecasting in summer, max-, and min-temperature data are included in neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation. (1993-1997)

  • PDF

An Empirical Study on Supply Chain Demand Forecasting Using Adaptive Exponential Smoothing (적응적 지수평활법을 이용한 공급망 수요예측의 실증분석)

  • Kim, Jung-Il;Cha, Kyoung-Cheon;Jun, Duk-Bin;Park, Dae- Keun;Park, Sung-Ho;Park, Myoung-Whan
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.343-349
    • /
    • 2005
  • This study presents the empirical results of comparing several demand forecasting methods for Supply Chain Management(SCM). Adaptive exponential smoothing using change detection statistics (Jun) is compared with Trigg and Leach's adaptive methods and SAS time series forecasting systems using weekly SCM demand data. The results show that Jun's method is superior to others in terms of one-step-ahead forecast error and eight-step-ahead forecast error. Based on the results, we conclude that the forecasting performance of SCM solution can be improved by the proposed adaptive forecasting method.

Design and Elucidation of Integrated Forecasting Model for Information Factor Analysis (정보인자분석(情報因子分析)을 위한 통합예측(統合豫測)모델의 설계(設計) 및 해석(解析))

  • Kim, Hong-Jae;Lee, Tae-Hui
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.1
    • /
    • pp.181-189
    • /
    • 1993
  • Over the past two decades, forecasting has gained widespread acceptance as an integral part of business planning and decision making. Accurate forecasting is a prerequisite to successful planning. Accordingly, recent advances in forecasting techniques are of exceptional value to corporate planners. But most of forecasting mothods are reveal its limit and problem for precision and reliability duing to each relationship for raw data and possibility of explanation for each variable. Therefore, to construct the Integrated Forecasting Model(IFM) for Information Factor Analysis, it shoud be considered that whether law data has time lag and variables are explained. For this. following several method can be used : Least Square Method, Markov Process, Fibonacci series, Auto-Correlation, Cross-Correlation, Serial Correlation and Random Walk Theory. Thus, the unified property of these several functions scales the safety and growth of the system which may be varied time-to-time.

  • PDF