• Title/Summary/Keyword: forecast demand

Search Result 504, Processing Time 0.026 seconds

Forecasting Demand of Agricultural Tractor, Riding Type Rice Transplanter and Combine Harvester by using an ARIMA Model

  • Kim, Byounggap;Shin, Seung-Yeoub;Kim, Yu Yong;Yum, Sunghyun;Kim, Jinoh
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Purpose: The goal of this study was to develop a methodology for the demand forecast of tractor, riding type rice transplanter and combine harvester using an ARIMA (autoregressive integrated moving average) model, one of time series analysis methods, and to forecast their demands from 2012 to 2021 in South Korea. Methods: To forecast the demands of three kinds of machines, ARIMA models were constructed by following three stages; identification, estimation and diagnose. Time series used were supply and stock of each machine and the analysis tool was SAS 9.2 for Windows XP. Results: Six final models, supply based ones and stock based ones for each machine, were constructed from 32 tentative models identified by examining the ACF (autocorrelation function) plots and the PACF (partial autocorrelation function) plots. All demand series forecasted by the final models showed increasing trends and fluctuations with two-year period. Conclusions: Some forecast results of this study are not applicable immediately due to periodic fluctuation and large variation. However, it can be advanced by incorporating treatment of outliers or combining with another forecast methods.

Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent (Lyapunov 지수를 이용한 전력 수요 시계열 예측)

  • Choo, Yeongyu;Park, Jae-hyeon;Kim, Young-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.171-174
    • /
    • 2009
  • Generally the neural network and the fuzzy compensative algorithm are applied to forecast the time series for power demand with a characteristic of non-linear dynamic system, but it has a few prediction errors relatively. It also makes long term forecast difficult for sensitivity on the initial condition. On this paper, we evaluate the chaotic characteristic of electrical power demand with analysis methods of qualitative and quantitative and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction, time series forecast for multi dimension using Lyapunov exponent quantitatively. We compare simulated results with the previous method and verify that the purpose one being more practice and effective than it.

  • PDF

Chaotic Predictability for Time Series Forecasts of Maximum Electrical Power using the Lyapunov Exponent

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.369-374
    • /
    • 2011
  • Generally the neural network and the Fuzzy compensative algorithms are applied to forecast the time series for power demand with the characteristics of a nonlinear dynamic system, but, relatively, they have a few prediction errors. They also make long term forecasts difficult because of sensitivity to the initial conditions. In this paper, we evaluate the chaotic characteristic of electrical power demand with qualitative and quantitative analysis methods and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction and a time series forecast for multi dimension using Lyapunov Exponent (L.E.) quantitatively. We compare simulated results with previous methods and verify that the present method is more practical and effective than the previous methods. We also obtain the hourly predictability of time series for power demand using the L.E. and evaluate its accuracy.

Establishing a Demand Forecast Model for Container Inventory in Liner Shipping Companies (정기선사의 컨테이너 재고 수요예측모델 구축에 대한 연구)

  • Jeon, Jun-woo;Jung, Kil-su;Gong, Jeong-min;Yeo, Gi-tae
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • This study attempts to establish a precise forecast model for the container inventory demand of shipping companies through forecasts based on equipment type/size, ports, and weekly system dynamics. The forecast subjects were Shanghai and Yantian Ports. Only dry containers (20, 40) and high cubes (40) were used as the subject container inventory in this study due to their large demand and valid data computation. The simulation period was from 2011 to 2017 and weekly data were used, applying the actual data frequency among shipping companies. The results of the model accuracy test obtained through an application of Mean Absolute Percentage Error (MAPE) verified that the forecast model for dry 40' demand, dry 40' high cube demand, dry 20' supply, dry 40' supply, and dry 40' high cube supply in Shanghai Port provided an accurate prediction, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Shanghai Port was otherwise verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model for dry 40' high cube demand and dry 20' supply in Yantian Port was accurate, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Yantian Port was generally verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model in this study also had relatively high accuracy when compared with the actueal data managed in shipping companies.

Heat Demand Forecasting for Local District Heating (지역 난방을 위한 열 수요예측)

  • Song, Ki-Burm;Park, Jin-Soo;Kim, Yun-Bae;Jung, Chul-Woo;Park, Chan-Min
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • High level of accuracy in forecasting heat demand of each district is required for operating and managing the district heating efficiently. Heat demand has a close connection with the demands of the previous days and the temperature, general demand forecasting methods may be used forecast. However, there are some exceptional situations to apply general methods such as the exceptional low demand in weekends or vacation period. We introduce a new method to forecast the heat demand to overcome these situations, using the linearities between the demand and some other factors. Our method uses the temperature and the past 7 days' demands as the factors which determine the future demand. The model consists of daily and hourly models which are multiple linear regression models. Appling these two models to historical data, we confirmed that our method can forecast the heat demand correctly with reasonable errors.

Analyzing Information Value of Temperature Forecast for the Electricity Demand Forecasts (전력 수요 예측 관련 의사결정에 있어서 기온예보의 정보 가치 분석)

  • Han, Chang-Hee;Lee, Joong-Woo;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.26 no.1
    • /
    • pp.77-91
    • /
    • 2009
  • It is the most important sucess factor for the electricity generation industry to minimize operations cost of surplus electricity generation through accurate demand forecasts. Temperature forecast is a significant input variable, because power demand is mainly linked to the air temperature. This study estimates the information value of the temperature forecast by analyzing the relationship between electricity load and daily air temperature in Korea. Firstly, several characteristics was analyzed by using a population-weighted temperature index, which was transformed from the daily data of the maximum, minimum and mean temperature for the year of 2005 to 2007. A neural network-based load forecaster was derived on the basis of the temperature index. The neural network then was used to evaluate the performance of load forecasts for various types of temperature forecasts (i.e., persistence forecast and perfect forecast) as well as the actual forecast provided by KMA(Korea Meteorological Administration). Finally, the result of the sensitivity analysis indicates that a $0.1^{\circ}C$ improvement in forecast accuracy is worth about $11 million per year.

Short-Term Load Forecast Algorithm using Weekday Change Ratio (평일환산비를 이용한 단기부하상정 알고리즘)

  • 고희석;이충식
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.5
    • /
    • pp.62-66
    • /
    • 1997
  • This paper is presented to short-term load forecast algorithm using weekday change ratio. The week periodicity was excluded from weekday change ratio. That was composed with the power demand forecast term of five and multiple regression model of the three form. The precision was good with 2.8[%]. Also the power demand of special day(weekend) of completely difficult forecast case of using the multiple regression model was able to forecast at this paper. Therefore, the forecast precision was enhanced and the reliable forecast model was constructed.

  • PDF

Forecasting the Long-term Water Demand Using System Dynamics in Seoul (시스템 다이내믹스법을 이용한 서울특별시의 장기 물수요예측)

  • Kim, Shin-Geol;Pyon, Sin-Suk;Kim, Young-Sang;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.187-196
    • /
    • 2006
  • Forecasting the long-term water demand is important in the plan of water supply system because the location and capacity of water facilities are decided according to it. To forecast the long-term water demand, the existing method based on lpcd and population has been usually used. But, these days the trend among the variation of water demand has been disappeared, so expressing other variation of it is needed to forecast correct water demand. To accomplish it, we introduced the System Dynamics method to consider total connections of water demand factor. Firstly, the factors connected with water demand were divided into three sectors(water demand, industry, and population sectors), and the connections of factors were set with multiple regression model. And it was compared to existing method. The results are as followings. The correlation efficients are 0.330 in existing model and 0.960 in SD model and MAE are 3.96% in existing model and 1.68% in SD model. So, it is proved that SD model is superior to the existing model. To forecast the long-term water demand, scenarios were made with variations of employment condition, economic condition and consumer price indexes and forecasted water demands in 2012. After all scenarios were performed, the results showed that it was not needed to increase the water supply ability in Seoul.

Demand Forecast of Spare Parts for Low Consumption with Unclear Pattern (적은 소모량과 불분명한 소모패턴을 가진 수리부속의 수요예측)

  • Park, Min-Kyu;Baek, Jun-Geol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.529-540
    • /
    • 2018
  • As the equipment of the military has recently become more sophisticated and expensive, the cost of purchasing spare parts is also steadily increasing. Therefore, demand forecast accuracy is also becoming an issue for the effective execution of the spare parts budget. This study predicts the demand by using the data of spare parts consumption of the KF-16C fighter which is being operated in the Republic of Korea Air Force. In this paper, SARIMA(Seasonal Autoregressive Integrated Moving Average) is applied to seasonal data after dividing the spare parts consumptions into seasonal data and non-seasonal data. Proposing new methods, Majority Voting and Hybrid Method, to the non-seasonal data which consists of spare parts of low consumption with unclear pattern, We want to prove that the demand forecast accuracy of spare parts improves.

Short-Term Load Forecast for Near Consecutive Holidays Having The Mixed Load Profile Characteristics of Weekdays and Weekends (평일과 주말의 특성이 결합된 연휴전 평일에 대한 단기 전력수요예측)

  • Park, Jeong-Do;Song, Kyung-Bin;Lim, Hyeong-Woo;Park, Hae-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1765-1773
    • /
    • 2012
  • The accuracy of load forecast is very important from the viewpoint of economical power system operation. In general, the weekdays' load demand pattern has the continuous time series characteristics. Therefore, the conventional methods expose stable performance for weekdays. In case of special days or weekends, the load demand pattern has the discontinuous time series characteristics, so forecasting error is relatively high. Especially, weekdays near the thanksgiving day and lunar new year's day have the mixed load profile characteristics of both weekdays and weekends. Therefore, it is difficult to forecast these days by using the existing algorithms. In this study, a new load forecasting method is proposed in order to enhance the accuracy of the forecast result considering the characteristics of weekdays and weekends. The proposed method was tested with these days during last decades, which shows that the suggested method considerably improves the accuracy of the load forecast results.