• Title/Summary/Keyword: forecast demand

Search Result 504, Processing Time 0.025 seconds

Short-Term Power Demand Forecast using Exclusion of Week Periodicity (주 주기성의 제거를 이용한 단기전력수요예측)

  • Koh, Hee-Seog;Lee, Chung-Sik;Lee, Chul-Woo;Chil, Jong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1177-1179
    • /
    • 1997
  • In this paper, short-term power demand forecast using exclusion of week periodicity presented. Week periodicity excluded from weekday change ratio. Forecast term of five and multiple regression model of the three form was composed. Forecast result was good. Therefore, It Could be the power demand forecast of special day(weekend). This method may contribute improvement of forecast accuracy.

  • PDF

Optimal Operating Method of PV+ Storage System Using the Peak-Shaving in Micro-Grid System (Micro-Grid 시스템에서 Peak-Shaving을 이용한 PV+ 시스템의 최적 운영 방법)

  • Lee, Gi-hwan;Lee, Kang-won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • There are several methods of peak-shaving, which reduces grid power demand, electricity bought from electricity utility, through lowering "demand spike" during On-Peak period. An optimization method using linear programming is proposed, which can be used to perform peak-shaving of grid power demand for grid-connected PV+ system. Proposed peak shaving method is based on the forecast data for electricity load and photovoltaic power generation. Results from proposed method are compared with those from On-Off and Real Time methods which do not need forecast data. The results also compared to those from ideal case, an optimization method which use measured data for forecast data, that is, error-free forecast data. To see the effects of forecast error 36 error scenarios are developed, which consider error types of forecast, nMAE (normalizes Mean Absolute Error) for photovoltaic power forecast and MAPE (Mean Absolute Percentage Error) for load demand forecast. And the effects of forecast error are investigated including critical error scenarios which provide worse results compared to those of other scenarios. It is shown that proposed peak shaving method are much better than On-Off and Real Time methods under almost all the scenario of forecast error. And it is also shown that the results from our method are not so bad compared to the ideal case using error-free forecast.

A Comparative Analysis of Oversea's Forecasting Models of the Railway Passenger Demand (철도수송수요 예측시스템의 해외 모형 비교분석 연구)

  • Lee, Hun-Ki;Ko, Yong-Seok;Min, Jae-Hong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.35-39
    • /
    • 2003
  • Effort has been given to improve demand forecast methodology of rail system since it can have great impact on project evaluation of rail system investment. However most of demand forecast softwares developed in western countries where concerns have been provided mostly to private transport and they should be updated in order to reflect our country's situation accurately. Therefore, this paper aims, especially focusing on rail system, to do comparison analysis of oversea's passenger demand forecast softwares and provide some ideas to develop the updated demand forecast system which enables to reflect our country's situation accurately. Main conclusions are that we will need to have well described model for real situation. So we will have to study for these aspects for travel demand forecasting system and develop the package architecture.

  • PDF

Domestic air demand forecast using cross-validation (교차검증을 이용한 국내선 항공수요예측)

  • Lim, Jae-Hwan;Kim, Young-Rok;Choi, Yun-Chul;Kim, Kwang-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2019
  • The aviation demand forecast field has been actively studied along with the recent growth of the aviation market. In this study, the demand for domestic passenger demand and freight demand was estimated through cross-validation method. As a result, passenger demand is influenced by private consumption growth rate, oil price, and exchange rate. Freight demand is affected by GDP per capita, private consumption growth rate, and oil price. In particular, passenger demand is characterized by temporary external shocks, and freight demand is more affected by economic variables than temporary shocks.

An Inventory Management for Fuzzy Linear Regression (퍼지선형회귀를 이용한 재고관리)

  • 허철회;조성진;정환묵
    • The Journal of Society for e-Business Studies
    • /
    • v.6 no.3
    • /
    • pp.197-207
    • /
    • 2001
  • The industrial structure comes to be complicated and for the production of the enterprise the rational and scientific forecast is necessary. The demand forecast has been widely used to linear regression, and up to now the linear regression was sharp the relationskp between then dependent variable and the independent variables. But, The real society demands accurate demand forecast from uncertain environment and subjective concept. This paper proposes the demand quantity forecast method to using of the fuzzy linear regression in uncertain and vague environment. Also, the optimum decision making of the demand quantity forecast uses integral calculus of the Sugeno to reflecting with the expert's (inventory manager) opinion.

  • PDF

Scenario Analysis of Natural Gas Demand for Electricity Generation in Korea (전력수급기본계획의 불확실성과 CO2 배출 목표를 고려한 발전용 천연가스 장기전망과 대책)

  • Park, Jong-Bae;Roh, Jea Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1503-1510
    • /
    • 2014
  • This study organizes scenarios on the power supply plans and electricity load forecasts considering their uncertainties and estimates natural gas quantity for electricity generation, total electricity supply cost and air pollutant emission of each scenario. Also the analysis is performed to check the properness of government's natural gas demand forecast and the possibility of achieving the government's CO2 emission target with the current plan and other scenarios. In result, no scenario satisfies the government's CO2 emission target and the natural gas demand could be doubled to the government's forecast. As under-forecast of natural gas demand has caused the increased natural gas procurement cost, it is required to consider uncertainties of power plant construction plan and electricity demand forecast in forecasting the natural gas demand. In addition, it is found that CO2 emission target could be achieved by enlarging natural gas use and demand-side management without big increase of total costs.

The Effect of the Demand Forecast on the Energy Mix in the National Electricity Supply and Demand Planning (전력수급계획 수립시 수요예측이 전원혼합에 미치는 영향)

  • Kang, Kyoung-Uk;Ko, Bong-Jin;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.114-124
    • /
    • 2009
  • The Ministry of Knowledge and Economy (MKE) establishes the Basic Plan for Long-Term Electricity Supply and Demand(BPE) biannually, a governmental plan for the stable electricity supply. This study investigated the effects of the electric demand forecast on the energy mix. A simplified simulation model was developed, which replaces the WASP program developed by the KPX and verified by comparing both results. Three different electric demand scenarios were devised based upon the 2005 electric demand forecast: Proper, 5 % higher, and 5% lower. The simplified model calculates the energy mix for each scenario of the year 2005. Then it calculates the energy mix for the proper electric demand forecast of the year 2007 using the energy mixes of the three scenarios as the initial conditions, so that it reveals the effect of electric demand forecast of the previous BPE on the energy mix of the next BPE. As the proper electric demand forecasts of the year 2005 and 2007 are the same, there is no change in the previous and the next BPEs. However when the electric demand forecasts were 5% higher in the previous BPE and proper in the next BPE, some of the planned power plant construction in the previous BPE had to be canceled. Similarly, when the electric demand forecasts were 5% lower in the previous BPE and proper in the next BPE, power plant construction should be urgently increased to meet the increased electric demand. As expected the LNG power plants were affected as their construction periods are shorter than coal fired or nuclear power plants. This study concludes that the electric demand forecast is very important and that it has the risk of long term energy mix.

Forecasting Demand of Childcare Teachers using Time Series Analysis (시계열 분석을 통한 보육교사 수급 전망)

  • Lee, Mee Hwa;Park, Jinah;Kang, Eun Jin
    • Korean Journal of Childcare and Education
    • /
    • v.12 no.6
    • /
    • pp.123-137
    • /
    • 2016
  • The purpose of this study was to forecast demand of childcare teachers based ion four different scenarios. In order to, the demand for childcare teachers from 2015 to 2024 were forecasted using time series techniques with data on the number of childcare teachers from 2003 to 2014. Results were as followings. Firstly, the demand for childcare teachers was expected to increase until 2019, but after 2020 steadily decreased in terms of scenario 1(child teacher ratio regulation). According to scenario 2(child teacher ratio based on 17 cities and provinces), the demand for childcare teachers was expected to need 440 teachers more until 2016. Then, according to scenario 3(two teachers each class), Scenario 4-1(one teacher and one staff each 2 toddler class and 3 older class) and scenario 4-2(one teacher and one staff each class), the demand of childcare teachers and staffs were estimated. These results implicated that childcare teachers and staffs supply policy would be established according to forecast demand.

A Model of Four Seasons Mixed Heat Demand Prediction Neural Network for Improving Forecast Rate (예측율 제고를 위한 사계절 혼합형 열수요 예측 신경망 모델)

  • Choi, Seungho;Lee, Jaebok;Kim, Wonho;Hong, Junhee
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.82-93
    • /
    • 2019
  • In this study, a new model is proposed to improve the problem of the decline of predict rate of heat demand on a particular date, such as a public holiday for the conventional heat demand forecasting system. The proposed model was the Four Season Mixed Heat Demand Prediction Neural Network Model, which showed an increase in the forecast rate of heat demand, especially for each type of forecast date (weekday/weekend/holiday). The proposed model was selected through the following process. A model with an even error for each type of forecast date in a particular season is selected to form the entire forecast model. To avoid shortening learning time and excessive learning, after each of the four different models that were structurally simplified were learning and a model that showed optimal prediction error was selected through various combinations. The output of the model is the hourly 24-hour heat demand at the forecast date and the total is the daily total heat demand. These forecasts enable efficient heat supply planning and allow the selection and utilization of output values according to their purpose. For daily heat demand forecasts for the proposed model, the overall MAPE improved from 5.3~6.1% for individual models to 5.2% and the forecast for holiday heat demand greatly improved from 4.9~7.9% to 2.9%. The data in this study utilized 34 months of heat demand data from a specific apartment complex provided by the Korea District Heating Corp. (January 2015 to October 2017).

Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent (Lyapunov 지수를 이용한 전력 수요 시계열 예측)

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1647-1652
    • /
    • 2009
  • Generally the neural network and the fuzzy compensative algorithm are applied to forecast the time series for power demand with a characteristic of non-linear dynamic system, but it has a few prediction errors relatively. It also makes long term forecast difficult for sensitivity on the initial condition. On this paper, we evaluate the chaotic characteristic of electrical power demand with analysis methods of qualitative and quantitative and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction, time series forecast for multi dimension using Lyapunov exponent quantitatively. We compare simulated results with the previous method and verify that the purpose one being more practice and effective than it.