• Title/Summary/Keyword: forcing term

Search Result 82, Processing Time 0.026 seconds

Preceding Scheme for Dual Spatial Multiplexing Systems with Limited Feedback (제한된 피드백 정보를 이용하는 이중 공간 다중화 시스템의 Preceding 기법)

  • Lee, Myoung-Won;Mun, Cheol;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1224-1230
    • /
    • 2006
  • In this paper, for spatial multiplexing with limited feedback, a precoding scheme is proposed based on the joint use of minimal instantaneous feedback and long-term feedback of a small number of bits, wherein the long-term feedback is used to convey a selected preceding matrix within a precodercodebook consisting of a number of unitary matrices, and the active column vectors of the selected unitary matrix are conveyed to the transmitter using instantaneous feedback. Focusing on the case of dual multi-input multi-output(MIMO) systems, precoder codebook design for maximizing the average throughput of a spatial multiplexing system with a zero-forcing(ZF) receiver is proposed. It is shown that the proposed scheme provides a considerable throughput enhancement over multi-mode antenna selection and multi-mode basis selection only with the additional long-yterm feedback of a small number of bits. For example, the throughput increases by 11.5 % than antenna selection and 5.1% than basis selection, respectively, when SNR=20 dB.

The Basic Study on the Technique of Fluid Flow Analysis Using the Immersed Boundary Method (가상 경계 방법을 이용한 유동 해석 기법에 관한 기초 연구)

  • Yang, Seung-Ho;Ha, Man-Yeong;Park, Il-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.619-627
    • /
    • 2004
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method. The results agree well with previous numerical and experimental results. This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications. The usefulness of this method will be confirmed when we solve the complex geometries and moving bodies.

The study of the characteristics of the stationary, rotating and oscillating cylinders using the immersed boundary method (가상 경계 방법을 이용한 정지, 회전 및 진동하는 실린더의 유동 특성에 관한 연구)

  • Yang, Seung-Ho;Ha, Man-Yeong;Park, Il-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.916-921
    • /
    • 2003
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method(FVM). This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications.

  • PDF

A Study on the Interrelationship between Residential Spaces and Social Structure in Latter term of Chosun Period - Focused on main houses of higher middle class in Gyeonggi province - (조선 후기 사회구조의 변화가 주거공간에 미친 영향에 관한 연구 - 경기지역 중상류 주거의 안채를 중심으로 -)

  • 박형진;류호창
    • Korean Institute of Interior Design Journal
    • /
    • no.41
    • /
    • pp.19-28
    • /
    • 2003
  • Residential space can be stated as a decisive body compositely affected by environmental, physical, social, and cultural influences. Resulting from this idea, residential space can be defined as a mirror reflecting peoples' life at that period. Therefore, it is possible to understand the social and cultural aspects of a certain era through analyzing the residential space built and used at that period. Viewing from this point, latter term of Chosun Period, as a transitional period, was a tie of collapse for the structure of middle-class society forcing its identity system to be reorganized, and of improving upon commerce, agriculture, and manual industry to enable modernization. Following this idea, the goal of this research is to analyze characteristics of higher middle class residences built at the close of 19th century in Gyeonggi province in order to bring into light the change of social structure of the period.

Approximate Controllability for Semilinear Neutral Differential Systems in Hilbert Spaces

  • Jeong, Jin-Mun;Park, Ah-Ran;Son, Sang-Jin
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.559-581
    • /
    • 2021
  • In this paper, we establish the existence of solutions and the approximate controllability for the semilinear neutral differential control system under natural assumptions such as the local Lipschitz continuity of nonlinear term. First, we deal with the regularity of solutions of the neutral control system using fractional powers of operators. We also consider the approximate controllability for the semilinear neutral control equation, with a control part in place of a forcing term, using conditions for the range of the controller without the inequality condition as in previous results.

Oscillation of Second-Order Nonlinear Forced Functional Dynamic Equations with Damping Term on Time Scales

  • Agwa, Hassan Ahmed;Khodier, Ahmed Mahmoud;Ahmed, Heba Mostaafa Atteya
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.777-789
    • /
    • 2016
  • In this paper, we establish some new oscillation criteria for the second-order forced nonlinear functional dynamic equations with damping term $$(r(t)x^{\Delta}(t))^{\Delta}+q({\sigma}(t))x^{\Delta}(t)+p(t)f(x({\tau}(t)))=e(t)$$, and $$(r(t)x^{\Delta}(t))^{\Delta}+q(t)x^{\Delta}(t)+p(t)f(x({\sigma}(t)))=e(t)$$, on a time scale ${\mathbb{T}}$, where r(t), p(t) and q(t) are real-valued right-dense continuous (rd-continuous) functions [1] defined on ${\mathbb{T}}$ with p(t) < 0 and ${\tau}:{\mathbb{T}}{\rightarrow}{\mathbb{T}}$ is a strictly increasing differentiable function and ${\lim}_{t{\rightarrow}{\infty}}{\tau}(t)={\infty}$. No restriction is imposed on the forcing term e(t) to satisfy Kartsatos condition. Our results generalize and extend some pervious results [5, 8, 10, 11, 12] and can be applied to some oscillation problems that not discussed before. Finally, we give some examples to illustrate our main results.

Mixed Layer Variability in Northern Arabian Sea as Detected by an Argo Float

  • Bhaskar, T.V.S. Udaya;Swain, D.;Ravichandran, M.
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.241-246
    • /
    • 2007
  • Northern Arabian Sea (NAS) between $17^{\circ}N-20.5^{\circ}N$ and $59^{\circ}E-69^{\circ}E$ was observed by using Argo float daily data fur about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by $2.3^{\circ}C$ and ocean gained an average of 99.8 $Wm^{-2}$. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low $\sim18Wm^{-2}$ and SST dropped by $3.4^{\circ}C$. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by $1.5^{\circ}C$ and ocean lost an average of 52.5 $Wm^{-2}$. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively big]h correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.

Accuracy of Short-Term Ocean Prediction and the Effect of Atmosphere-Ocean Coupling on KMA Global Seasonal Forecast System (GloSea5) During the Development of Ocean Stratification (기상청 계절예측시스템(GloSea5)의 해양성층 강화시기 단기 해양예측 정확도 및 대기-해양 접합효과)

  • Jeong, Yeong Yun;Moon, Il-Ju;Chang, Pil-Hun
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.599-615
    • /
    • 2016
  • This study investigates the accuracy of short-term ocean predictions during the development of ocean stratification for the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 5 (GloSea5) as well as the effect of atmosphere-ocean coupling on the predictions through a series of sensitive numerical experiments. Model performance is evaluated using the marine meteorological buoys at seas around the Korean peninsular (KP), Tropical Atmosphere Ocean project (TAO) buoys over the tropical Pacific ocean, and ARGO floats data over the western North Pacific for boreal winter (February) and spring (May). Sensitive experiments are conducted using an ocean-atmosphere coupled model (i.e., GloSea5) and an uncoupled ocean model (Nucleus for European Modelling of the Ocean, NEMO) and their results are compared. The verification results revealed an overall good performance for the SST predictions over the tropical Pacific ocean and near the Korean marginal seas, in which the Root Mean Square Errors (RMSE) were $0.31{\sim}0.45^{\circ}C$ and $0.74{\sim}1.11^{\circ}C$ respectively, except oceanic front regions with large spatial and temporal SST variations (the maximum error reached up to $3^{\circ}C$). The sensitive numerical experiments showed that GloSea5 outperformed NEMO over the tropical Pacific in terms of bias and RMSE analysis, while NEMO outperformed GloSea5 near the KP regions. These results suggest that the atmosphere-ocean coupling substantially influences the short-term ocean forecast over the tropical Pacific, while other factors such as atmospheric forcing and the accuracy of simulated local current are more important than the coupling effect for the KP regions being far from tropics during the development of ocean stratification.

Spatial and Temporal Features of PM10 Evolution Cycle in the Korean Peninsula (한반도내 미세먼지 발생주기의 시공간분포 특성)

  • Jang, Jae-Hoon;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.189-202
    • /
    • 2012
  • Power spectral analysis for $PM_{10}$ observed at 10 cities in the Korean Peninsula from 2004 to 2010 was carried out to examine the spatial and temporal features of $PM_{10}$ evolution cycle. The power spectrum analysis proposed 9 typical cycles (0.5 day, 1day, 5.4day, 8~10day, 19~21day, 26day, 56day, 180day and 365day) for $PM_{10}$ evolution and the cycles are strongly associated with dilution and transportation due to the meterological influence. The spectrum intensity of 5.4day and 26day $PM_{10}$ evolution cycles mainly depend on the advection cycles of synoptic pressures system and long-term variation of climatological forcing, respectively. The intensity of $PM_{10}$ evolution with longer temporal cycles than one day tends to be stronger in La ni$\tilde{n}$a period in comparison with that in El ni$\tilde{n}$o period. Mean of typical intensity of $PM_{10}$ evolution in La ni$\tilde{n}$a period estimated to be 30% larger than El ni$\tilde{n}$o period. Thus the global scale meteorological phenomena such as El ni$\tilde{n}$o and La ni$\tilde{n}$a also can influence the variation of wind system in the Korean Peninsula and $PM_{10}$ evolution. but global scale forcing tends to influence different manner for $PM_{10}$ evolution in accordance with its temporal cycles.

A 3 Dimensional Characteristic Analysis of SLIM by the 2-D Finite Element Method (2차원 유한요소법에 의한 SLIM의 3차원적 특성 해석)

  • Cho, Yun-Hyun;Kim, Yong-Joo;Shin, Pan-Seok;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.37-42
    • /
    • 1990
  • In order to obtain optimal design criteria and operating parameters, a Single-sided Linear Induction Motor (SLIM) is analysed by using a 2-D finite element method with magnetic and current vector potential. In the analysing procedures, the governing equation is derived from Maxwell's equation combined with the magnetic vector potential. As a forcing term, 3-phase voltage source is employed using the Kirchhoff's voltage law in order to look into effects of the unbalanced 3-phase currents and air gap flux density. Also, 2ndary eddy current distribution, longitudinal end and transverse edge effects are in turns visualized by flux lines in 3 different analysing planes as functions of frequency and input power.

  • PDF