• 제목/요약/키워드: forced convection flow

검색결과 169건 처리시간 0.027초

유수대류계수에 관한 실험적 연구 (Experimental Study on Coefficient of Flow Convection)

  • 정상은;오태근;양주경;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.297-302
    • /
    • 2000
  • Pipe cooling method is widely used for reduction of hydration heat and control of cracking in mass concrete structures. However, in order to effectively apply pipe cooling systems to concrete structure, the coefficient of flow convection relating the thermal transfer between inner stream of pipe and concrete must be estimated. In this study, a device measuring the coefficient of flow convection is developed. Since a variation of thermal distribution caused by pipe cooling has a direct effect in internal forced flows, the developed testing device is based on the internal forced flow concept. Influencing factors on the coefficient of flow convection are mainly flow velocity, pipe diameter and thickness, and pipe material. finally a prediction model of the coefficient of flow convection is proposed using experimental results from the developed device. According to the proposed prediction model, the coefficient of flow convection increases with increase in flow velocity and decreases with increase in pipe diameter and thickness. Also, the coefficient of flow convection is largely affected by the type of pipe materials.

  • PDF

뉴 디자인된 히트싱크의 열 유동 현상 컴퓨터 시뮬레이션 (Computational Simulation of Heat flow phenomena in Newly Designed Heat Sinks)

  • 임송철;최종운;강계명
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.775-779
    • /
    • 2004
  • For improvement of heat dissipation performance, heat analysis is conducted on the newly designed heat sinks under two convection conditions by using computational fluid dynamics(CFD). Three types of heat sink, plate, wave and top vented wave, are used, and convection conditions are the variations of gravity direction at natural convection and of fan location at forced convection. The results of analysis showed that the heat resistances of top vented wave heat sink were $0.17^{\circ}C$/W(forced convection) and $0.48^{\circ}C$/W(natural convection). In the case of natural convection, gravity direction affected heat flow change, and protection against heat performance was superior in case of z-axis gravity direction. Under the forced convection, all the heat sinks revealed superior thermal characteristics in the fan position of z-axis rather than y-axis. In this study, it was observed that the top vented wave type heat sink showed the best ability of heat radiation comparing with the others.

강제 대류를 통한 열소산 구조물의 위상최적화 (Topological Optimization of Heat Dissipating Structure with Forced Convection)

  • 윤길호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.408-409
    • /
    • 2008
  • This paper presents a new development for topology optimization of heat-dissipating structure with forced convection. To cool down electric devices or machines, two types of convection models have been widely used: Natural convection model with a large Archimedes number and Forced convection with a small Archimedes number. Nowadays, many engineering application areas such as electrochemical conversion device or fuel cell devices adopt the forced convection to transfer generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which generated heat transfer. Thus, this paper studies optimal topological designs considering fluid-heat interaction. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

  • PDF

회전하고 있는 바깥쪽 실린더를 갖고 있는 수평 원주형 환형 내에서의 공기의 혼합 대류 (Mixed convection of air in a horizontal cylindrical annulus with rotating outer cylinder)

  • 유주식
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.551-561
    • /
    • 1997
  • Mixed convection of air in a horizontal concentric cylindrical annulus is investigated numerically. Isothermal boundary conditions are prescribed at the inner and outer cylinders, with the inner cylinder being warmer. The forced flow is induced by the outer cylinder which is rotating slowly with constant angular velocity with its axis at the center of the annulus. The effect of the forced flow on the flow pattern and heat transfer of natural convection is investigated for the annulus of (inner-cylinder radius/gap width) = 1. There appear two eddies, one eddy or no eddy according to the Rayleigh and Reynolds numbers. Map of the three flow regimes is constructed on the Ra-Re plane. (author). 28 refs., 9 figs., 2 tabs.

개구부의 유동이 대류에 미치는 영향에 관한 수치연구 (A Numerical Study on Effects of Flow Through Openings on Convection)

  • 박외철;이경아
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.52-56
    • /
    • 2000
  • The finite control volume method was utilized to investigate the effects of flow through openings on convection in an enclosure. Flow patterns and temperature distribution were compared for non-dimensional inflow velocity U=20, 40, 60 at Ra=$10^4$ and $5\times10^4$, respectively. The inflow velocity influenced temperature distribution in the enclosure significantly and lowered temperature on the top wall. The flow through openings forced the position of the highest temperature on the top wall to move toward the outflow opening.

  • PDF

하나의 실린더가 회전하는 수평 환형 공간에서의 혼합 대류 (Mixed Convection in a Horizontal Annulus with a Rotating Cylinder)

  • 유주식;하대홍
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.1-9
    • /
    • 2001
  • Mixed convection in a horizontal annulus is considered, and the effect of a forced flow on the natural convective flow is investigated. The inner cylinder is hotter than the outer cylinder, and the outer cylinder is rotating with constant angular velocity with its axis at the center of the annulus. The unsteady streamfunction-vorticity equation is solved with a finite difference method. For the fluid with Pr=0.7, there appear flows with two eddies, one eddy, or no eddy according the Rayleigh and Reynolds numbers. The rotation of the outer cylinder reduces the heat transfer rate at the wall of the annulus. The oscillatory multicellular flow of a low Prandtl number fluid with Pr=0.01 can be effectively suppressed by the forced flow.

  • PDF

PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구 (A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm)

  • 최영기;정진영
    • 설비공학논문집
    • /
    • 제2권1호
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF

고분자전해질 연료전지의 환원극 블록과 공기 유량 영향에 대한 전산 해석 연구 (A Numerical Study of Cathode Block and Air Flow Rate Effect on PEMFC Performance)

  • 조성훈;김준범
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.96-102
    • /
    • 2022
  • 고분자전해질막 연료전지의 반응물인 수소와 산소는 기체 상태이므로, 반응물이 원활히 전달될수록 작동 전압의 손실을 줄일 수 있다. 높은 전류밀도 영역에서 산소 물질 전달이 전압 손실을 좌우하므로, 환원극 유로의 형상 변경에 대한 연구들이 진행되어 왔다. 환원극 유로 형상 중에서 유로를 막는 블록은 반응물을 다공성 매질인 기체확산층으로 강제 대류 하도록 사용되었다. 본 연구에서는 간단한 단 채널의 연료전지 모델에 블록을 배치하였다. 전산 유체역학을 사용하였고, 공기 공급 유량을 달리하였을 때 블록으로 인한 강제 대류 효과가 전압-전류 곡선과 국부 전류 밀도에 대한 영향을 연구하였다. 기체확산층으로의 강제 대류 현상을 통하여 적은 공기 공급 유량으로도 높은 전류 밀도를 얻을 수 있었다. 다수의 블록을 직렬로 배치한 경우에 1개의 블록만 배치한 것보다 강제 대류 효과를 증가시켜 높은 전류밀도를 얻을 수 있었다.

Effect of Dynamic Flow on the Structure of Inhibition Layer in Hot-dip Galvanizing

  • Jin, Young Sool;Kim, Myung Soo;Kim, Su Young;Paik, Doo Jin
    • Corrosion Science and Technology
    • /
    • 제10권1호
    • /
    • pp.30-36
    • /
    • 2011
  • The effect of dynamic flow or forced convection were investigated and compared on the formation of inhibition layer, galvanizing and galvannealing reactions through the hot-dip galvanizing simulator with the oscillation of specimen in zinc bath, continuous galvanizing pilot plant with zinc pumping system through the snout and continuous galvanizing operation with Dynamic $Galvanizing^{TR}$ system. The interfacial Al pick-up was not consistent between the results of simulator, pilot plant and line operation, but the morphology of inhibition layer became compact and refined by the forced convection. The growth of Fe-Zn intermetallics at the interface was inhibited by the forced convection, whereas the galvannealing rate would be a little promoted.

액체 연료 표면에서의 화염확장기구에 관한 실험적 연구 (An experimental Investigation on Flame spreading over liquid fuel surface)

  • 김한석
    • 한국화재소방학회논문지
    • /
    • 제7권1호
    • /
    • pp.5-10
    • /
    • 1993
  • Flame spreading over liquid fuel surface has been investigated using thermocouple and schlieren photograph. Without forced convection, it was clearly found that the flame spreading is mainly controlled by surface flow which is maybe generated by change of surface tension. Furthermore, the radiative heat transfer is dominant over a conductive heat transfer in kerosene. But the latter was found more influential than the former in diesel. Oscillation of flame spreading was found. It maybe cause of surface flow.

  • PDF