• Title/Summary/Keyword: force-closure

Search Result 57, Processing Time 0.02 seconds

COMPUTERIZED EVALUATION OF OCCLUSAL CONTACTS IN CENTRIC CLOSURE IN DISTAL EXTENSION PARTIAL DENTURE CASES (유리단 국소의치 환자에서 T-scan system을 이용한 중심교합시에 교합접촉 양상 연구)

  • Lee Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.565-573
    • /
    • 1992
  • This clinical study was to analyze occlusal contacts in maximum intercuspation on distal extension partial denture and to compare tooth contact state between the denture teeth and abutment teeth by time mode and force mode using the T-scan system. The subjects ware twenty-one adult patients with upper natural teeth and lower distal extension partial denture. Conclusion : 1. The patient with simultaneous occlusal contacts both denture tooth and abutment and bilaterally in Kennedy Class I cases was one-sixth, but there was no one with symmetric occlusal and equal force among bilateral denture teeth and abutments. 2. The five-fifteenth of Kennedy Class I case patients resulted in simultaeous occlusal contacts bet-ween denture teeth and abutments but no one has the symmetric occlusal contacts and unifarm force between denture teeth and abutment teeth.

  • PDF

Structural Analysis and Safety Assessment for Constricted Bridges (협착교량의 구조해석 및 안전성 평가)

  • Jeong, Jae-Hun;Kim, Moon-Ok;Choi, Hyun-Ho;Kim, Jang-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.33-38
    • /
    • 2022
  • As the intense heat continues, many cases of highway pavement blow up and bridge expansion joints damages have been inspected. Especially, Expansion joint closure of bridges is an important problem that can threat the safety of the bridge structure or reduce long-term durability. This paper proposed a structural analysis method for bridges having expansion joint closure and structural analysis was performed to verify the effects according to bridge types. Analysis bridges were divided into four types: concrete and steel bridges, shallow and piled foundations. To induce the situation of abutments and bridge decks are jammed, the following loads were additionally considered; lateral flow pressure, pavement expansion by alkali-aggregate reaction, creep settlement of backfill. The structural analysis method was verified by comparing the structural analysis results with the actually measured joint gap data. In addition, behavioral analysis due to joint closure was conducted to confirm the change in safety ratio by type of superstructure as the axial force increased.

Factor Affecting Mandibular Rotational Troque Movements (하악의 비틀림회전운동에 영향을 미치는 요인)

  • 이유미;한경수;허문일
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.2
    • /
    • pp.143-155
    • /
    • 1998
  • This study was performed to investigate the factor that might affect mandibualr body rotation. For the study, 115 patients with temporomandibular disorders and 35 dental students without angy signs and symptoms of temporomandibular disorders were randomly selected as the patient group and the contreol group, respectively. Preferred chewing side, Angle' classification, lateral guidance pattern, and affected side were clinically recorded, and the amount of Mandibular body rotational torque movement was measured in wide opening and closure, in right and left excursion with vertical and lateral distance in frontal plane, right and left rotational angel in horizontal and in frontal plane. Masticatory muscle activity of anteriorocclusal contact pattern on maximal hard biting were also observed synchronously with BioEMG and T-Scan , respectively. The observed items were muscle activity of anterior temporalis and superficial masseter, and tooth contact status related to contact number, force, duration, and occlusal unbalance between right and left arch. The data collected were analyzed by SAS statistical program. The results of this study were as follows : 1. Mean value of vertical distance in frontal plane in wide opening and closure was more in control subjects than in patients, but there was no difference for rotational angle. In right excursion, rotational angles were greater in patient group than in control group. 2. Comparison among the subjects by preferred chewing side did not reveal any significant difference, but comparison among patients by affected side showed more rotational amount in bilaterally affected patients than in unilaterally affected patients. 3. Comparison among the subjects by Angle's classification or lateral guidance pattern revealed no difference. There was also no difference between preferred chewing side and contralateral side, and between affected side and contralateral side. 4. Positive correlation in madibular rotational torque movements were observed among vertical distance, total horizontal rotation angle, electromyographic activity of anterior temporalis, tooth contact number, and tooth contact force but total frontal rotation angle almost did not show any correlation with other variables except vertical distance.

  • PDF

High Utility Itemset Mining over Uncertain Datasets Based on a Quantum Genetic Algorithm

  • Wang, Ju;Liu, Fuxian;Jin, Chunjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3606-3629
    • /
    • 2018
  • The discovered high potential utility itemsets (HPUIs) have significant influence on a variety of areas, such as retail marketing, web click analysis, and biological gene analysis. Thus, in this paper, we propose an algorithm called HPUIM-QGA (Mining high potential utility itemsets based on a quantum genetic algorithm) to mine HPUIs over uncertain datasets based on a quantum genetic algorithm (QGA). The proposed algorithm not only can handle the problem of the non-downward closure property by developing an upper bound of the potential utility (UBPU) (which prunes the unpromising itemsets in the early stage) but can also handle the problem of combinatorial explosion by introducing a QGA, which finds optimal solutions quickly and needs to set only very few parameters. Furthermore, a pruning strategy has been designed to avoid the meaningless and redundant itemsets that are generated in the evolution process of the QGA. As proof of the HPUIM-QGA, a substantial number of experiments are performed on the runtime, memory usage, analysis of the discovered itemsets and the convergence on real-life and synthetic datasets. The results show that our proposed algorithm is reasonable and acceptable for mining meaningful HPUIs from uncertain datasets.

Experimental and numerical investigation of a surface-fixed horizontal porous wave barrier

  • Poguluri, Sunny Kumar;Kim, Jeongrok;George, Arun;Cho, I.H.
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Experimental and numerical investigations were conducted to study the performance of a surface-fixed horizontal porous wave barrier in regular waves. The characteristics of the reflection and transmission coefficients, energy dissipation, and vertical wave force were examined versus different porosities of the barrier. Numerical simulations based on 3D Reynolds Averaged Navier-Stokes equations with standard low-Re k-ε turbulent closure and volume of fluid approach were accomplished and compared with the experimental results conducted in a 2D wave tank. Experimental measurements and numerical simulations were shown to be in satisfactory agreement. The qualitative wave behavior propagating over a horizontal porous barrier such as wave run-up, wave breaking, air entrapment, jet flow, and vortex generation was reproduced by CFD computation. Through the discrete harmonic decomposition of the vertical wave force on a wave barrier, the nonlinear characteristics were revealed quantitatively. It was concluded that the surface-fixed horizontal barrier is more effective in dissipating wave energy in the short wave period region and more energy conversion was observed from the first harmonic to higher harmonics with the increase of porosity. The present numerical approach will provide a predictive tool for an accurate and efficient design of the surface-fixed horizontal porous wave barrier.

Bite Force and Lip Closing Force Measurement in Preschool Children (학령 전 어린이의 교합력과 구순 폐쇄력)

  • Cho, Nayoung;Kim, Hyeongun;Kim, Jaegon;Baik, Byeongju;Yang, Yeonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.3
    • /
    • pp.233-241
    • /
    • 2015
  • The aim of this study was to determine the bite force and lip closing force in preschool children and to analyze the correlation between these forces by age, height and weight, respectively. Data were obtained from 98 children (56 males, 42 females) ranging from 3 to 6 years of age. The magnitude of the bite force was measured bilaterally corresponding with the 2nd primary molars using a bite force gauge, $GM10^{(R)}$ (Nagano Keiki) and the force of lip closure was measured using LIP DE $CUM^{(R)}$ (Cosmo Instruments). The averages of bite force for boys and girls were 217.69 N and 205.05 N, respectively. The relationship between bite force with age, height, and weight present significant positive correlation (p < 0.001, p < 0.001, and p < 0.001, respectively). The averages of lip closing force for boys and girls were 4.81 N and 4.07 N respectively. The relationship between lip closing force with age, height, and weight present significant positive correlation (p < 0.001, p < 0.001, and p < 0.001, respectively). No significant differences were observed between boys and girls (p > 0.05) in both forces. A significant correlation was observed between lip closing force and bite force (p = 0.002).

A comparison of different compressive forces on graft materials during alveolar ridge preservation

  • Cho, In-Woo;Park, Jung-Chul;Shin, Hyun-Seung
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.51-63
    • /
    • 2017
  • Purpose: Following tooth extraction, alveolar ridge preservation (ARP) can maintain the dimensions of ridge height and width. Although previous studies have demonstrated the effects of ARP, few if any studies have investigated the compressive force applied during grafting. The aim of this study was to determine the effects of different compressive forces on the graft materials during ARP. Methods: After tooth extraction, sockets were filled with deproteinized bovine bone mineral with 10% porcine collagen and covered by a resorbable collagen membrane in a double-layered fashion. The graft materials were compressed using a force of 5 N in the test group (n=12) and a force of 30 N in the control group (n=12). A hidden X suture was performed to secure the graft without primary closure. Cone-beam computed tomography (CBCT) was performed immediately after grafting and 4 months later, just before implant surgery. Tissue samples were retrieved using a trephine bur from the grafted sites during implant surgery for histologic and histomorphometric evaluations. Periotest values (PTVs) were measured to assess the initial stability of the dental implants. Results: Four patients dropped out from the control group and 20 patients finished the study. Both groups healed without any complications. The CBCT measurements showed that the ridge volume was comparably preserved vertically and horizontally in both groups (P>0.05). Histomorphometric analysis demonstrated that the ratio of new bone formation was significantly greater in the test group (P<0.05). The PTVs showed no significant differences between the 2 groups (P>0.05). Conclusions: The application of a greater compressive force on biomaterials during ARP significantly enhanced new bone formation while preserving the horizontal and vertical dimensions of the alveolar ridge. Further studies are required to identity the optimal compressive force for ARP.

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

Occlusal Analysis in the Policemen with Temporomandibular Disorders Using T-scan II System (경찰 종사자의 측두하악장애환자에서 T-scan II System을 이용한 교합분석)

  • Lim, Hyun-Dae;Jung, Seung-Ah;Lee, You-Mee
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.4
    • /
    • pp.365-373
    • /
    • 2006
  • This study suggested correction of excessive mouth opening or maximum occlusal contact to analyse occlusal contact time, occlusal contact number and force through evaluation of occlusal pattern in policemen with temporomandibular disorders. The community of policemen influence on temporomandibular disorder's development and progress due to other condition of mouth opening and maximal occlusal contact. Repeated training or changes of usual life style may cause imbalance of stomatognathic system including the masticatory muscle, then develop or aggravate pain of temporomandibular joints and associated structures. This study uses T-scan II system(Tekscan Co., USA) for evaluation on occlusal pattern may influence temporomandibular disorders, and then the subjects take a sensor at 20 mm opening for maximal occlusal contact force. The policemen with temporomandibualr disorders get more long time on maximum contact timing, more short on end contact timing, and more force on end contact force than general society's. So they get closure of mouth with more short time and more force, then transfer remaining load to temporomandibular joint. There are no statistically significances between affected side and occlusal pattern of occlusal contact time and force. There are Left -right dental arch imbalances seems on Rt. dental arch if affected side is right and Lt. dental arch if affected side is left. In above results, It's worth due consideration that policemen with temporomandibular disorders get more smooth mandibualr movement and less force on maximal occlusal contact position.

Mechanistic Pressure Jump Terms based on the System Eigenvalues of Two-Fluid Model for Bubbly Flow (2-유체 모델의 고유치에 근거한 기포류에서의 계면압력도약항)

  • Chung, M.S.;Lee, W.J.;Lee, S.J.;Song, C.H.;Ha, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.81-86
    • /
    • 2001
  • Interfacial pressure jump terms based on the physics of phasic interface and bubble dynamics are introduced into the momentum equations of the two-fluid model for bubbly flow. The pressure discontinuity across the phasic interface due to the surface tension force is expressed as the function of fluid bulk moduli and bubble radius. The consequence is that we obtain from the system of equations the real eigenvalues representing the void-fraction propagation speed and the pressure wave speed in terms of the bubble diameter. Inversely, we obtain an analytic closure relation for the radius of bubbles in the bubbly flow by using the kinematic wave speed given empirically in the literature. It is remarkable to see that the present mechanistic model using this practical bubble radius can indeed represent both the mathematical well-posedness and the physical wave speeds in the bubbly flow.

  • PDF