• 제목/요약/키워드: force vibration

검색결과 2,594건 처리시간 0.029초

Wireless structural health monitoring of stay cables under two consecutive typhoons

  • Kim, Jeong-Tae;Huynh, Thanh-Canh;Lee, So-Young
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.47-67
    • /
    • 2014
  • This study has been motivated to examine the performance of a wireless sensor system under the typhoons as well as to analyze the effect of the typhoons on the bridge's vibration responses and the variation of cable forces. During the long-term field experiment on a real cable-stayed bridge in years 2011-2012, the bridge had experienced two consecutive typhoons, Bolaven and Tembin, and the wireless sensor system had recorded data of wind speeds and vibration responses from a few survived sensor nodes. In this paper, the wireless structural health monitoring of stay cables under the two consecutive typhoons is presented. Firstly, the wireless monitoring system for cable-stayed bridge is described. Multi-scale vibration sensor nodes are utilized to measure both acceleration and PZT dynamic strain from stay cables. Also, cable forces are estimated by a tension force monitoring software based on vibration properties. Secondly, the cable-stayed bridge with the wireless monitoring system is described and its wireless monitoring capacities for deck and cables are evaluated. Finally, the structural health monitoring of stay cables under the attack of the two typhoons is described. Wind-induced deck vibration, cable vibration and cable force variation are examined based on the field measurements in the cable-stayed bridge under the two consecutive typhoons.

풍압과 변위의 동시계측을 통한 고층건물의 공력 특성 평가 (Simultaneous Measurement of Wind Pressures and Displacements on Tall Building)

  • 김용철;로 위안롱;윤성원
    • 한국공간구조학회논문집
    • /
    • 제17권1호
    • /
    • pp.77-84
    • /
    • 2017
  • Vortex-induced vibration and instability vibration of tall buildings are very important fluid-structure interaction phenomenon, and many fundamental questions concerning the influence of body movement on the unsteady aerodynamic force remain unanswered. For tall buildings, there are two experimental methods to investigate the characteristics of unsteady aerodynamic forces, one is forced vibration method and the other is free vibration method. In the present paper, a free vibration method was used to investigate the unsteady aerodynamic force on tall building whose aspect ratio is 9 under boundary layer simulating city area. Wind pressures on surfaces and tip displacements were measured simultaneously, and the characteristics of tip displacements and generalized forces were discussed. It was found that variation of across-wind displacements showed different trend between the case when wind speed increases and wind speed decreases, and the fluctuating generalize forces in across-wind direction of vibrating model are larger than that of static model near the resonant wind speed and approach to the static value. And for higher wind speed range, there were two peaks in across-wind power spectra of generalize forces of vibrating model, which means that two frequency components are predominant in unsteady aerodynamic forces.

Spacecraft vibration testing: Benefits and potential issues

  • Kolaini, Ali R.;Tsuha, Walter;Fernandez, Juan P.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권2호
    • /
    • pp.165-175
    • /
    • 2018
  • Jet Propulsion Laboratory has traditionally performed system level vibration testing of flight spacecraft. There have been many discussions in the aerospace community for more than a decade about spacecraft vibration testing benefits or lack thereof. The benefits and potential issues of fully assembled flight spacecraft vibration testing are discussed herein. The following specific topics are discussed: spacecraft screening test to uncover workmanship problems for launch dynamics environments, force- and moment-limited vibration testing, potential issues with structural frequency identification using base shake test data, and failures related to vibration shaker testing and ways to prevent them.

정규모우드를 활용한 비선형 대칭구조물의 강제진동해석 (On the Forced Vibration in the Nonlinear Symmetric Structure by Using the Normal Modes)

  • 박철희;최성철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1994년도 추계학술대회논문집; 한국종합전시장, 18 Nov. 1994
    • /
    • pp.21-28
    • /
    • 1994
  • The forced vibration with the symmetric boundary condition in nonlinear structure is studied by utilizing the characteristic of the free vibration which have two modes with the similar natural frequency. Two linear modes exist to have no concern with the amplitude. It is found that the normal mode or elliptic orbit as the newly coupled modes is generated in accordance with changing the stability. It is also known that responses for forced vibration having the small external force and damping are near mode of free vibration and the stability for each response is determined according to the stability for each response is determined according to the stability in mode of free vibration. Finally the stability and bifurcation are analyzed in proportion to increment of external force and damping.

  • PDF

선내 탑재 장비용 마운팅 시스템의 진동특성 평가 프로그램 개발 (Development of evaluation program for vibration characteristics of onboard machinery with resilient mountings)

  • 김극수;최수현;백일국;조연;김병곤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.155-160
    • /
    • 2001
  • This study is performed to evaluate and design the vibration characteristics of the onboard machinery with resilient mountings. To reduce the vibration level of onboard machinery with resilient mountings, it is important to evaluate and, if necessary, modify the vibration characteristics of the resilient mountings. In this study, we have developed a program to calculate natural frequencies of the machinery with resilient mountings, forced vibration levels due to internal excitation force of the machinery itself and external excitation forces. of the main engine and the propeller. and the force and motion transmissibility of the resilient mountings. The developed program is also able to be applied to optimal design of the resilient mountings for obtaining a target natural frequency and for achieving a minimum forced vibration level at the center of gravity of the machinery.

  • PDF

일체형 동력전달계를 가진 지게차의 진동 특성 규명 및 저감 (Vibration Characteristics and Countermeasures of a Transaxle Type Forklift Truck)

  • 김원현;주원호;김승규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.912-918
    • /
    • 2004
  • Main vibration problems of a transaxle type forklift truck are caused by the resonance of engine excitation force and natural mode shade of major components such as engine-mount system, mast, and main frame. But, it is well known that the reduction of vibration is very difficult because of the limitation of structural modifications. In this paper, the vibration characteristics of engine-mast system including engine mount were firstly identified by the experimental and simplified numerical methods. And also, the free and forced vibration characteristics of a whole forklift truck were surveyed with modal test and ODS(operation deflection shape) measurement. Based on these results, the reliable finite element model was developed. Finally, various countermeasures were considered and applied to a real forklift truck and then its effects were confirmed.

  • PDF

통합제진마운트용 MR 댐퍼의 설계 및 성능 평가 (Design and Performance Evaluation of MR Damper for Integrated Isolation Mount)

  • 성민상;임승구;최승복;김철호;우제관
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1046-1051
    • /
    • 2010
  • This paper presents design and performance evaluation of magnetorheological(MR) damper for integrated isolation mount. The MR damper needs two functions for the integrated isolation mount. The one is vibration absorption and the other is isolation of vibration transmission. For vibration absorption, the MR damper requires wide damping force range. And for isolation of vibration transmission, the friction of MR damper needs to be eliminated. In order to achieve this goal, a novel type of MR damper is originally designed in this work. Subsequently, the MR damper is mathematically modeled and its damping force characteristics are evaluated. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated. From the result, this paper evaluates the performance of MR damper for integrated isolation mount.

디젤기관 추진 축계의 연성진동에 관한 연구 (제3보 : 프로펠러 기진에 의한 진동과 그 대책) (A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (3rd Report : Vibration by Propeller Exciting and its Countermeasure))

  • 전효중;이돈출;김의간;김정렬
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.173-179
    • /
    • 2001
  • The torsional or axial critical vibration of the order coinciding with the number of propeller blades is simultaneously excited by the harmonic tangential or radial forces acting on the crank shaft and by the harmonic of the same order from the propeller. The exciting torque of propeller is relatively small comparing with that of crank side, but the exciting force of propeller rather larger than that of crank shaft. With this situation, the exciting force of propeller cannot neglect if the axial vibration of propulsion shafting is calculated. With the propeller in its optimal angular position, i.e. its excitation effect opposed to that of the engine, the stresses at the critical revolution will largely cancel themselves out. In this paper, a method of optimizing the angular propeller position with regard to torsional and axial vibration is studied. The optimal relative angle is determined theoretically by calculation results of coupled torsional-axial vibration.

  • PDF

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium

  • Farid, Khurram;Taj, Muhammad
    • Advances in concrete construction
    • /
    • 제13권3호
    • /
    • pp.255-264
    • /
    • 2022
  • Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

튜브와 지지대 사이의 동적상호 충격력 측정장치 특성규명에 관한 연구 (A Study on the Characteristics of the Tube-to-Support Dynamic Impact Force Measurement Facility)

  • 김일곤;박진무
    • 소음진동
    • /
    • 제5권1호
    • /
    • pp.95-106
    • /
    • 1995
  • Flow-induced vibration in heat exchanger (or fuel rod) in nuclar power plant can cause dynamic interactions between tubes and tube supports resulting in fretting-wear. To increase the reliability and design life of heat exchanger components, design criteria that establish acceptable limits of vibration and minimize fretting wear are necessary. The fretting-wear rate is dependent upon material combination, contact configuration, environmental conditions and tube-to tube support dynamic interaction. It is demostrated that the fretting -wear rate correlates well with tube-to-support contact force or work rate. The tube-to-support dynamic interaction, which consists of dynamic contact forces and tube motion, is used to relate single-span wear data to real heat exchanger configurations consisting of multi-span tube bundles. This paper describes the test facility to measure tube-to-support dynamic impact force and reports its dynamic characteristics through the four impact tests - a force transduces independent and external impact tests, central ring inside impact test and additional cylinder impact test. Through the tests the impact parameter change dependent upon the material difference of impacting ball is studied, and the impact parameters of Force Transducer Assembly components are measured. And also the dynamic behavior of Force Transducer Assembly is analyzed. The force measurement technique herein is shown to provide a reasonable measure of dynamic contact forces.

  • PDF