• Title/Summary/Keyword: force vibration

Search Result 2,597, Processing Time 0.047 seconds

Transverse Vibration of a Uniform Euler-Bernoulli Beam Under Varying Axial Force Using Differential Transformation Method

  • Shin Young-Jae;Yun Jong-Hak
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.191-196
    • /
    • 2006
  • This paper presents the application of techniques of differential transformation method (DTM) to analyze the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force. The governing differential equation of the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force is derived and verified. The varying axial force was extended to the more general case which was high polynomial consisted of many terms. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The accuracy and the convergence in solving the problem by DTM are discussed.

Compensation of errors caused by resonance vibration of measurement system in impact force measurement

  • Usui, Y.;Miyazawa, S.;Sawai, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.593-596
    • /
    • 1994
  • When a force impulse acting on a massive and plex object is measured with a dynamometer, be resonant vibration of the measurement system often leads to serious inaccuracies. A more accurate measurement is obtained when the transfer function ,of the object-dynamometer system is used to compensate for the error in the dynamometer's output signal. The natural frequency and the damping coefficient of the transfer function are estimated by analyzing the waveform of the free damped vibration period after the loading of the force has ended. The residue of the system is determined such that the compensated force spectrum becomes smooth within a neighborhood of the natural frequency. The effectiveness of this signal processing method is experimentally tested on a hammer impulse, under the assumption that the hammer's high resonant frequency accurately models the problems encountered in force impact measurement. The compensation method is used to derive a improved estimate of the hammer impulse.

  • PDF

A Design of Active Vibration Control System Using Electromagnetic Actuators (전자기 액츄에이터를 이용한 진동제어시스템)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Caraiani, Mitica;Kang, Dong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.936-939
    • /
    • 2006
  • The pneumatic isolator is widely adopted for anti-vibration of precision measuring and manufacturing equipments. But, when the precision demand on anti-vibration is extreme or the load is moving, the performance of anti-vibration can not meet satisfaction. In these cases, as a complementary, active vibration suppression system can be added for advanced performance. In this paper, an active control system is presented, which uses electromagnetic actuators for vibration suppression. The anti-vibration characteristic of pneumatic isolator is analyzed for system modeling and actuator specifying. The modeling and the 3D dynamic simulation is performed for control system design. For the electromagnetic actuator design, the magnetic flex density and the current-force characteristic analysis are achieved.

  • PDF

Development of MR Mount for Vibration Control of Marine Diesel-Generator Set (박용 발전기세트 진동 제어용 MR 마운트 개발)

  • Kang, Ok-Hyun;Kim, Won-Hyun;Joo, Won Ho;Park, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.381-385
    • /
    • 2014
  • This paper investigates the magneto-rheological(MR) mount for the marine diesel-generator(D/G) sets. Sometimes, significant vibrations over the allowable limit are observed on the D/G sets due to their huge excitation forces. Because the severe vibration can lead to structural damages to the D/G sets, it should be reduced below the limit. Although passive mounts with rubber isolators are usually used, the vibration reduction performance is not always sufficient. In addition, expecting that the vibration levels required by customers will get more severe, vibration reduction devices need to be developed. To the aim, the flow mode type of MR mount has been designed. Especially, the annular-radial configuration was adopted to enhance the damping force within the restricted space. The geometry of the mount has been optimized to obtain the required damping force and the magnetic field analysis has been carried out using ANSYS APDL. To verify the performance of the developed MR mount, an excitation test was conducted. In addition, they were applied to a medium-speed diesel generator and it was verified that about 40% of vibration reduction was yielded.

  • PDF

A Study on the Axial Vibration Characteristics of the Super Large 2 Stroke Low Speed Diesel Engine with 14 Cylinders (14 실린더를 갖는 초대형 저속 2행정 디젤엔진의 종진동 특성에 관한 연구)

  • Lee, D.C.;Kim, T.U.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.376-381
    • /
    • 2009
  • The increasing needs for higher cargo capacity in the container vessels' fleet has led to ship builder's demand for higher power output rating engine to meet the propulsion requirement, thus, leading to the development of super large two stroke low speed diesel engines. This large sized bore engines with more than 12 cylinders are capable of delivering power output up to more than 100,000 bhp at maximum continuous rating. The thrust variation force due to axial vibration occurring in propulsion shafting of these ships are transmitted to ship structure via thrust bearing. This force may vibrate the super structure of ship in the fore-aft direction and the fatigue strength of crank shaft can be decreased by additional bending stress increase in crank shaft pin and journal. In this paper, the axial vibration of propulsion shafting system on the 14RT-flex96C super large diesel engine with 14 cylinders is identified by theoretical analysis and vibration measurement.

  • PDF

Dynamic Response and Vibration Characteristics of an Isolation Rail Track under a Traveling Mass (주행질량하의 방진 궤도레일의 동적응답 및 진동특성)

  • Oh, B.J.;Ryu, B.J.;Kim, J.H.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2011
  • This paper presents the dynamic response and the vibration characteristics for a rail-track supported by discrete springs and dampers. Recently, automatic conveyer system, rail-track, rack-master system demand the soundproof facilities and vibration suppression measures in order to satisfy the strict environmental standards. The equations of motions of the dynamic characteristics for a vibration suppression rail-track under a traveling mass were derived by Galerkin's mode summation method considering gravity, centrifugal force, Coriolis force, inertia force of the moving mass, transverse inertia of the rail-track. Also, numerical results were calculated by Runge-Kutta integration method. In order to investigate vibration characteristics and dynamic responses, modal testing and measurement of the responses of the rail-track were performed. Through the experiment and numerical simulations, numerical results have a good agreement with experimental ones.

Vertical Vibration Isolator for Reducing Structural Vibration (구조물의 진동저감을 위한 수직형 면진장치)

  • Choi, Sanghyun;Baek, Joon-Ho;Lee, You In
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In these days, the design of a structure for reducing or eliminating noise and vibration is getting more important, as the social demands for reducing environmental pollution rise. In this paper, the basic concept and performance verification test results of the recently developed vertical vibration isolator are presented. The isolator attenuates vibration using the damping action from the friction plane made of PTFE and provides the restoring force from the polyurethane springs arranged in vertical and horizontal directions. The performance verification tests consist of a test for identifying performance change during load rate variation and a test for confirming the force-displacement relationship assumption in vibration force range.

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

Monitoring Machining Conditions by Analyzing Cutting-Force Vibration (절삭력 진동 분석에 의한 가공조건 모니터링)

  • Piao, Chunguang;Kim, Ju Wan;Kim, Jin Oh;Shin, Yoan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.839-849
    • /
    • 2015
  • This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.

Vibrational Behavior of Ship Springing and Its Prediction (선박의 Springing 진동 현상과 예측 방법)

  • 이수목;정건화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1055-1060
    • /
    • 2001
  • Springing phenomena of ships is introduced with its concept, research history and approach methodology. Being a hydroelasticity problem, non-linear vibration and stochastic process, springing was formulated and modeled in vibration point of view separating hydrodynamic force into system properties and excitation force. Both RAO and response spectrum as well as wave spectrum were presented as a case study of springing analysis for a flexible vessel with wide breadth. The effect of advance speed, heading angle and loading condition were investigated as parametric study. The results and observations showed availability of analysis for the prediction of the ship springing behavior.

  • PDF