• 제목/요약/키워드: force sensing

검색결과 349건 처리시간 0.025초

비연성 수직형 마이크로 자이로스코프의 구조해석 및 최적설계 (Structural Analysis and Optimum Design of a De-coupled Vertical Micro-Gyroscope)

  • 박성균;정희문;김명훈;김형태;하성규
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1840-1848
    • /
    • 2003
  • This paper presents the structural analysis and optimum design of a vertical micro-gyroscope with decoupled 2 degrees of freedom (DOF), driven by electrostatic force. Simplified beam models were presented to derive the structural stiffness of the driving spring of the U shape and the sensing spring of I shape. A finite element analysis (FEA) was performed to validate each derivation. A total mass and a polar mass moment of inertia were also obtained and used in calculating the resonance frequency at each mode of the 2 DOF. The resonance frequencies of the total system were calculated using the proposed models and it has been found that they were in excellent agreement with those of the FEA. Finally, the developed analysis program was then linked to an optimum design module, and an optimum design of the micro-gyroscope was successfully performed.

Lysyl-tRNA Synthetase Inhibits Various Shear Stress-stimulated Signaling Pathways in Endothelial Cells

  • Park, Heon-Yong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2008년도 Proceedings of the Convention
    • /
    • pp.103-115
    • /
    • 2008
  • Hemodynamic shear stress, the dragging force generated by blood flow, is known as an anti-atherogenic factor. We tested whether lysyl-tRNA synthetase (KRS) will be utilized as an agent controlling shear-sensing systems. KRS was previously known to be secreted as a pro-inflammatory agent. Here we found that KRS inhibited various shear-stimulated signaling pathways. We further found that KRS binds to detergent-resistant membrane (DRM), indicating that KRS binding molecules exist in DRM, specialized regions of the plasma membrane. DRM plays important roles in a variety of cellular processes and consists of gangliosides, signaling molecules and cytoskeletons. We then determined that KRS was colocalized with integrins ${\alpha}4$, ${\alpha}5$ and $av{\beta}3$. In addition, KRS was shown to be associated with sialic acid, existing at the end of gangliosides. Interestingly, the adherent effect of KRS was inhibited by pretreatment with sialic acid. Moreover, treatment of endothelial cells with neuraminidase appeared to inhibit both the KRS adhesion to endothelial cells and shear-stimulated signaling. In conclusion, KRS is likely to be utilized as a vascular regulator.

  • PDF

램프 로드/언로드 하드디스크 드라이브의 역기전력을 이용한 VCM 속도제어 (Ramp Load/Unload Velocity Control of VCM Using BEMF in HDD)

  • 정준;김태수;강태식;정광조;이철우
    • 한국소음진동공학회논문집
    • /
    • 제16권1호
    • /
    • pp.50-56
    • /
    • 2006
  • Since most of small form-factor drives have a load/unload mechanism and the flying height of the head is getting lower as the capacity of disk drives increases, the load/unload velocity becomes one of the important factors to ensure the reliability of the load/unload mechanism. To control the load/unload velocity accurately, velocity sensing is essential. In this paper, we introduce a very practical method that acquires the load/unload velocity from the back electromotive force (BEMF) of a voice coil motor (VCM) and propose a calibration method for measuring the BEMF from a given circuit. Moreover, the effect of calibration error and temperature variation on the measurement of BEMF is shown by simulation. Then, this present method is applied to the load/unload velocity controller and is verified from the experimental result.

Development of a Portable Gait Phase Detection System for Patients with Gait Disorders

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권3호
    • /
    • pp.145-150
    • /
    • 2005
  • A new gait detection system using both FSR (force sensing resistor) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the heel of a shoe. An algorithm was also developed to determine eight different gait transitions during four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was evaluated from nine heathy mans and twelve hemiplegic patients. Healthy volunteers were asked to walk in various gait patterns: level walking, fore-foot walking and stair walking. Only the level walking was performed in hemiplegic patients. The gait detection system was compared with a optical motion analysis system and the outputs of the FSR sensors. In healthy subjects, the developed system detected successfully more than $99\%$ for both level walking and fore-foot walking. For stair walking, the successful detection rate of the system was above$97\%$. In hemiplegic patients, the developed system detected approximately 98% of gait transitions. The developed gait phase detection system will be helpful not only to determine pathological gait phases but also to apply prosthetics, orthotics and functional electrical stimulation for patients with various gait disorders.

비균형적인 앉은자세 교정을 위한 힘-감지 저항센서 이용 연구 (Study on a method for correcting unbalanced sitting posture by force-sensing resistors)

  • 변상필;장인혁;박기혁;손량희;이원구
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.203-210
    • /
    • 2014
  • In this study, we present a method for correcting unbalanced sitting posture alignment to its optimal position, by designing a chair equipped with pressure sensor. With increasement in sedentary work, such as office work or study, people are now spending more time in chair. To accommodate sedentary life styles, many chairs are being designed for a comfortable sitting condition. However, without awareness and efforts for correct sitting posture, it may not be possible to achieve such condition. When the weight is not distributed evenly while sitting, it may cause various diseases such as scoliosis and a herniated disc. Being inspired by such facts, we have progressed basic researches to maintain the correct sitting posture. To demonstrate the proof-of-concept validation, we installed a series of sensors to a chair and then measured the changes in pressure distribution in various postures. The results show that this approach can be potentially helpful for understanding how fundamental problems due to unbalanced sitting posture can be corrected and maintained properly.

Sliding Mode Observer Driver IC Integrated Gate Driver for Sensorless Speed Control of Wide Power Range of PMSMs

  • Oh, Jimin;Kim, Minki;Heo, Sewan;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1176-1187
    • /
    • 2015
  • This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.

족압패턴에 의한 보행보조기를 위한 입각기 감지기법 (Recognition of Stance Phase for Walking Assistive Devices by Foot Pressure Patterns)

  • 이상룡;허근섭;강오현;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.223-228
    • /
    • 2011
  • In this paper, we proposed a technique to recognize three states in stance phase of gait cycle. Walking assistive devices are used to help the elderly people walk or to monitor walking behavior of the disabled persons. For the effective assistance, they adopt an intelligent sensor system to understand user's current state in walking. There are three states in stance phase; Loading Response, Midstance, and Terminal Stance. We developed a foot pressure sensor using 24 FSRs (Force Sensing/Sensitive Resistors). The foot pressure patterns were integrated through the interpolation of FSR cell array. The pressure patterns were processed to get the trajectories of COM (Center of Mass). Using the trajectories of COM of foot pressure, we can recognize the three states of stance phase. The experimental results show the effective recognition of stance phase and the possibility of usage on the walking assistive device for better control and/or foot pressure monitoring.

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Zenz, Georg;Berger, Wolfgang;Gerstmayr, Johannes;Nader, Manfred;Krommer, Michael
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.547-577
    • /
    • 2013
  • To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.

자기 메카트로닉스 : 차세대 의공학 및 재활 기기 개발을 위한 센서와 액추에이터의 새로운 접근방법 (Magneto-Mechatronics : A New Approach to Sensors and Actuators for Next-Generation Biomedical and Rehabilitation Devices)

  • 유창호;김성훈
    • 재활복지공학회논문지
    • /
    • 제10권3호
    • /
    • pp.229-236
    • /
    • 2016
  • 자기 센서와 액추에이터는 산업과 의료 분야에서 광범위하게 사용되고 있다. 센서와 액추에이터의 기반의 통합시스템은 기계 및 전자 기기들의 일반적인 조합으로써 메카트로닉스로 정의된다. 최근에 자기 무선 센서와 액추에이터가 개발되어지고, 다양한 분야에서 사용되고 있다. 특히 이 메커니즘은 자성 물질 및 물리적 현상에 관한 것으로 자기의 세기의 따라 달라진다. 그러나 이들 연구의 경계는 명확하지 않다. 따라서, 자기 마이크로 로봇, 자기액추에이터 및 센서들을 포함한 새롭고 정확한 정의가 필요하다. 본 연구에서는 의공학 및 재활을 위한 자기 메카트로닉스의 진보되고 확장된 개념을 혈관 재활을 위한 무선 펌프 시스템과 모션 감지 시스템을 중심으로 소개하고자 한다.

영구자석 동기발전기의 위치센서 고장 회피 제어 (Position Sensor Fault Tolerant Control of Permanent Magnet Synchronous Generator)

  • 이광운
    • 전력전자학회논문지
    • /
    • 제16권4호
    • /
    • pp.351-357
    • /
    • 2011
  • 영구자석 동기발전기의 벡터제어를 위해서는 회전자 위치가 필요하며 엔코더와 같은 위치센서가 위치 검출 목적으로 일반적으로 사용되고 있다. 그러나 위치센서의 사용은 영구자석 동기전동기 제어시스템의 신뢰성을 저하시킨다. 본 논문에서는 영구자석 동기전동기 제어시스템을 위한 위치센서 고장 회피 제어 방법을 제안한다. 확장 유기전력에 기반한 센서리스 위치 추정 알고리즘을 센서를 이용하는 벡터 제어와 병렬로 수행함으로써 위치센서 고장발생 시점에서 센서리스 벡터제어로 신속히 재구성할 수 있도록 하였다. 실험을 통해 제안된 방식의 유용성을 보인다.