• Title/Summary/Keyword: force method

Search Result 8,406, Processing Time 0.03 seconds

Analysis of Automobile Fluid Flow Field Using FDM Method (유한차분법을 이용한 자동차 유동장 해석)

  • Kim, Myun-Hee;Lee, Tae-Young;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • When Automobile runs high velocity, it causes sleepy velocity profile then that generates lift force and drag force. Lift force reduce tire friction force. Drag force increase consumed power. For improve automobile performance, reduction of Lift force and Drag force was seriously considered. It measured experimently using wind tunnel, numerically using numerical analysis. Finite difference method is using difference equation and simplifed mesh. This method require less calculation time and computer power than other method.

  • PDF

Double Electro-Magnetic Force Compensation Method for the Micro Force Measurement (미소 힘 측정을 위한 이중 전자기힘 보상방법)

  • 최임묵;우삼용;김부식;김수현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.104-111
    • /
    • 2003
  • Micro force measurement is required more frequently for a precision manufacturing and investment in fields of precision industries such as semiconductor, chemistry and biology, and so forth. Null balance method has been introduced as an alternative of a loadcell. Loadcells have advantages in aspects of low cost and easy manufacturing, but have also the limitation in resolution and sensitivity to environment variations. In this paper, null balance method is explained and the dominant parameters related to system performances are mentioned. Null position sensor, electromagnetic system and controller are investigated. Also, the characteristic experiment is carried out in order to estimate the resolution and the measurement range. In order to overcome the limitation by the drift of position sensor and the performance of controller, double electromagnetic force compensation method is proposed and experimented. After controlling and filtering, the resolution under $\pm$ 1mg and measurement range over 300g could be obtained.

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R.;Huang, M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.157-172
    • /
    • 2011
  • A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

A Clamping Force Estimation Method in Electric Parking Brake Systems (전자 제어식 주차브레이크 시스템의 제동력 추정 기법)

  • Jang, Min-Seok;Lee, Young-Ok;Lee, Won-Goo;Lee, Choong-Woo;Son, Young-Sup;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2291-2299
    • /
    • 2008
  • Hall effect force sensors have been used to measure clamping force in conventional Electric Parking Brake(EPB) systems. Estimation of clamping force without the sensors has drawn attentions due to mounting space limitations and cost issues. Removing the sensor requires the estimation of the initial contact point where the clamping force is effectively applied to the brake pads. In this paper, we propose how to estimate the initial contact point finding the relation between the angular velocity of an actuator and the initial contact point. For force estimation a look-up table is used as a function of the displacement of parking cable from the initial contact point. The proposed method is validated by experiments. From the experimental results we observe that the proposed method satisfies the specifications. The designed method is also able to estimate clamping force although parking cables are loosened and brake pads are worn out. Applying the proposed method enables manufacturing of low cost EPB systems.

Design of Force Estimator Based on Disturbance Observer (외란 관측기에 기반을 둔 힘 추정기 설계)

  • 엄광식;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1140-1146
    • /
    • 1999
  • In this paper, a force estimation method is proposed for force control without force sensor. For this , a disturbance observer is applied to each joint of an {{{{ { n}_{ } }}}} degrees of freedom manipulator to obtain a simple equivalent robot dynamics(SERD) being represented as an n independent double integrator system. To estimate the output of disturbance observer due to internal torque, the disturbance observer output estimator(DOOE) is designed, where uncertain parameters of the robot manipulator are adjusted by the gradient method to minimize the performance index which is defined as the quadratic form of the error signal between the output of disturbance observer and that of DOOE. when the external force is exerted, the external force is estimated by the difference between the output of disturbance observer and DOOE, since output of disturbance observer includes the external torque signal as well as the internal torque estimated by the output of DOOE. And then, a force controller is designed for force feedback control employing the estimated force signal. To verify the effectiveness of the proposed force estimation method, several numerical examples and experimental results are illustrated for the 2-axis direct drive robot manipulator.

  • PDF

Improvement of Chip Thickness Model in 2-flutes Slot End Milling (2날 엔드밀 슬롯 가공시 칩두께 모델의 개선)

  • Lee Dong-Kyu;Lee Ki-Yong;Lee Kune-Woo;Oh Won-Zin;Kim Jeong-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • Generally, cutting force models use a sin function method to calculate chip thickness. In slot end milling, the error from a sin function method is much bigger than other machining because a tool rotation angle in cutting is much larger. Thus in this paper, a new method to calculate chip thickness was suggested and evaluated. In a new method, tool position data according to tool rotation are checked and stored so that it is possible correct chip thickness is calculated. Cutting force waveforms simulated from a sin function method and a new method and measured waveforms from experiments were compared and error percentages were obtained. Finally, a new method had good results for simulating cutting force in slot end milling.

Structural Analysis of Space Truss by using New Force Method based on Singular Value Decomposition (특이값 분해로 정식화 된 새로운 하중법을 이용한 입체 트러스 구조 해석)

  • Lee, Su-Hyun;Chung, Woo-Sung;Lee, Jae-Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.481-489
    • /
    • 2011
  • In this paper presents new force method by using singular value decomposition. The existing force method has some advantages about analysis of truss structures such as it is easier basic concept than finite element method, which apply to analyze truss structures. However, this method has complex formulation for analysis. Therefore, in this study proposes new force method using singular value decomposition, which is both having easy basic concept and simple computation than existing force method. The proposed method is illustrated through numerical examples.

Efficient seismic analysis of multi-story buildings

  • Lee, Dong Guen;Kim, Hee Cheul
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.497-511
    • /
    • 1996
  • The equivalent static force procedure and the response spectrum analysis method are widely used for seismic analyses of multi-story buildings. The equivalent static force procedure is one of the most simple but less accurate method in predicting possible seismic response of a structure. The response spectrum analysis method provides more accurate results while it takes much longer computational time. In the response spectrum method, dynamic response of a multi-story building is obtained by combining modal responses through a proper procedure such as SRSS or CQC method. Since all of the analysis results are expressed in absolute values, structural engineers have difficulties to combine them with the results obtained from the static analysis. Design automation is interrupted at this stage because of the difficulty in the decision of the most critical design load. Pseudo-dynamic analysis method proposed in this study provides more accurate seismic analysis results than those of the equivalent static force procedure since the dynamic characteristics of a structure is considered. And the proposed method has an advantage in combination of the analysis results due to gravity loads and seismic loads since the direction of the forces can be considered.

Multibody Dynamics Analysis for Contacting Rigid Bodies (접촉하는 강체간의 다물체 동역학 해석)

  • Park, Jeong-Hun;Hwang, Yo-Ha;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.411-420
    • /
    • 2000
  • This paper presents a new method for calculating contact position and contact force. The proposed method calculates accurate contact position by introducing intermediate parameters. Accurate contac t force can be obtained by solving reduced equations of motion iteratively. This method can be applied to calculate not only contact force on contact points but also contact force on kinematic joints such as a rotational joint and a translational joint. Four numerical examples are given to demonstrate the effectiveness of the proposed algorithm.

SUBSTRUCTURING ALGORITHM FOR STRUCTURAL OPTIMIZATION USING THE FORCE METHOD

  • JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.41-47
    • /
    • 1998
  • We consider some numerical solution methods for equality-constrained quadratic problems in the context of structural analysis. Sparse orthogonal schemes for linear least squares problem are adapted to handle the solution step of the force method. We also examine these schemes with substructuring concepts.

  • PDF