• Title/Summary/Keyword: force measurement

Search Result 1,628, Processing Time 0.03 seconds

A New PMU (parametric measurement unit) Design with Differential Difference Amplifier (차동 차이 증폭기를 이용한 새로운 파라메터 측정기 (PMU) 설계)

  • An, Kyung-Chan;Kang, Hee-Jin;Park, Chang-Bum;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • This paper describes a new PMU(parametric measurement unit) design technique for automatic test equipment(ATE). Only one DDA(differential difference amplifier) is used to force the test signals to DUT(device under test), while conventional design uses two or more amplifiers to force test signals. Since the proposed technique does not need extra amplifiers in feedback path, the proposed PMU inherently guarantees stable operation. Moreover, to measure the response signals from DUT, proposed technique also adopted only one DDA amplifier as an IA(instrument amplifier), while conventional IA uses 3 amplifiers and several resistors. The DDA adopted two rail-to-rail differential input stages to handle full-range differential signals. Gain enhancement technique is used in folded-cascode type DDA to get open loop gain of 100 dB. Proposed PMU design enables accurate and stable operation with smaller hardware and lower power consumption. This PMU is implemented with 0.18 um CMOS process and supply voltage is 1.8 V. Input ranges for each force mode are 0.25~1.55 V at voltage force and 0.9~0.935 V at current force mode.

Effects of pH and the Existence of CO2 Gas on the Silica Surface Characteristics at Silica/Pb(II) Solution Interface (CO2 가스의 존재 여부와 용액의 pH가 Silica/Pb(II) 용액 계면에서 Silica 표면의 특성에 미치는 영향)

  • Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.263-271
    • /
    • 2003
  • Effects of the existence of $CO_2$ gas and pH on the silica surface characteristics at silica/Pb(II) and sodium dodecyl sulfonate (SDS, $C_{12}H_{25}SO_3Na$) solution interface were studied. The hydrophobic characteristics of silica surface was delineated by contact angle measurement and surface force measurement using atomic force microscopy (AFM). In $CO_2$ free condition provided by purging $N_2$ gas, the contact angle of fused silica surface in $10^{-4}M$ Pb(II) and SDS solution increased greatly up to $90^{\circ}$ compared with $40^{\circ}$ in atmospheric condition. It was due to the precipitation of $PbCO_3$ in atmospheric condition. In $CO_2$ free condition the change of contact angle and adhesion force ($F_{ad}$) in AFM, affected by pH change, was similar to the distribution of $PbOH^+$ ion in speciation diagram corresponding to $10^{-4}M$ total Pb(II). Therefore, it was convinced that the $PbOH^+$ ion among Pb(II) species would be the main adsorbing type on silica surface. Both of contact angle measurement and surface force measurement using AFM showed that the Pb only treatment made the silica surface hydrophobic. However, it could not be explained theoretically by current knowledge, and required further study in atomic level to solve the problem.

Cutting Force Regulation in Milling Process Using Sliding Mode Control (슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어)

  • Lee, Sang-Jo;Lee, Yong-Seok;Go, Jeong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

Development of Tire Vertical Force Estimation Algorithm in Real-time using Tire Inner Surface Deformation (타이어 내부 표면 변형량을 이용한 타이어 수직하중 실시간 추정 알고리즘 개발)

  • Lee, Jaehoon;Kim, Jin-Oh;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2013
  • Over the past few years, intelligent tire is developed very actively for more accurate measurement of real-time tire forces generated during vehicle driving situation. Information on the force of intelligent tire could be used very usefully to chassis control systems of a vehicle. Intelligent tire is based on deformation of tire's inner surface from the waveform of a SAW, or Surface Acoustic Wave. The tire vertical force is estimated by using variance analysis of sensor signals. The estimated tire vertical force is compared with the tire vertical force generated during vehicle driving situation in real-time environment. The scope of this paper is a correlation study between the measured sensor signals and the tire vertical force generated during vehicle driving situation.

Effect of Contact Stiffness on Lateral Force Calibration of Atomic Force Microscopy Cantilever (원자 현미경 탐침의 수평방향 힘 교정에 미치는 접촉 강성의 영향)

  • Tran, Da Khoa;Jeon, Ki-Joon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.289-296
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used for imaging surfaces and measuring surface forces at the nano-scale. Force calibration is important for the quantitative measurement of forces at the nano-scale using AFM. Normal force calibration is relatively straightforward, whereas the lateral force calibration is more complicated since the lateral stiffness of the cantilever is often comparable to the contact stiffness. In this work, the lateral force calibrations of the rectangular cantilever were performed using torsional Sader's method, thermal noise method, and wedge calibration method. The lateral optical lever sensitivity for the thermal noise method was determined from the friction loop under various normal forces as well. Experimental results showed that the discrepancies among the results of the different methods were as large as 30% due to the effect of the contact stiffness on the lateral force calibration of the cantilever used in this work. After correction for the effect of contact stiffness, all the calibration results agreed with each other, within experimental uncertainties.

A New Algorithm for Control of Robotic Arc Welding Process (로봇 아크용접 공정제어를 위한 새로운 알고리즘)

  • Park, Yo-Chang;Kim, Il-Su;Park, Chang-Eon;Kim, Jung-Sik;Heo, Eop;Jung, Young-Jae
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.65-68
    • /
    • 2001
  • The application of a feedback control system in robotic arc welding is becoming more and more demanding than ever before. This requirement arises from the fact that robotic arc welding process needs no manual operator to monitor and manipulate the process parameters and hence a means of controlling the quality of the robotic arc welding process becomes apparent. Arc force sensor employed in this research to monitor the bead geometry of the arc welding process, A relationship between the bead dimension and the arc force distributions was established. Experimental configuration for measurement of arc force was used to quantify the changes in the arc force distributions of the plate being welded. Arc force sensor mounted at the end of the robot wrist was employed to measure the arc force applied to the weld. The sensor information was the used to establish a relationship between welding current and arc force. Arc force sensor have shown to be on of the most sophisticated technique to monitor perturbations that occurred during arc welding process.

  • PDF

A New Design of AFM Probe for Nanotribological Characterizations Measurement of Human Hair (모발의 나노 트라이볼러지 특성해명을 위한 원자현미경(Atomic Force Microscopy) 프로브의 개발)

  • Kweon, Hyun Kyu;Gao, Yan Wei
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • People are always pursuing the aesthetic feeling relentlessly. But some people have such problems with their hairs like alopecia, cancer chemotherapy, burns, and scalp injury. So the synthetic hair has played a very important role to make up for these deficiencies. But long term use can lead to adverse reactions or uncomfortable feeling. This is primarily caused by its properties differ with human hair. In particular, nanotribological characterizations (roughness, friction force and adhesive force) of synthetic hair surface are dissatisfy with the needs of normal hairs. This paper presents the experiments on nanotribological characterizations measurements of human hairs (coloring hair, permed hair and common hair) in shampooing condition or without shampooing condition. Using atomic force microscopy (AFM) to find out a range of synthetic hair nanotribological characterizations which can correspond with natural hair. The measurements of nanotribological characterizations focus on surface roughness, friction force and adhesive force, and a new design of AFM probe was used for measuring the nanotribological characterizations.

Intra- and inter-rater reliability of muscle thickness measurement of the tibialis anterior using different inward pressures

  • Lee, Seong-Joo;Lim, Ji Young;Lee, Chang-Hyung;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.4
    • /
    • pp.218-224
    • /
    • 2019
  • Objective: This reliability study examined the effects of applying varying induced inward pressures using a transducer placed at 0° neutral ankle position (NEU) and 15° ankle dorsiflexion (DF) on tibialis anterior (TA) muscle thickness using a custom-made device with a force indicator during rehabilitative ultrasound imaging. Design: Cross-sectional study. Methods: Twenty-four healthy subjects were recruited in this study. Two examiners measured the muscle thickness of the TA at 0° NEU and 15° DF in 3 conditions of inward pressures (1.0 N, 2.0 N, and 4.0 N) using a custom-made holder. The muscle thickness was measured three times for each of the conditions arranged in random order. For intra- and inter-rater reliability, the intraclass correlation coefficients (ICCs) with 95% confidence intervals, standard error of measurement, minimal detectable change, and coefficient of variation were analyzed. One-way repeated measures analysis of variance was conducted for investigating changes of TA muscle thickness according to the inward pressures of the transducers. Results: The intra-rater reliability of TA muscle thickness measurement was excellent (ICC3,1: 0.92-0.96) for all conditions (at both ankle joint angles per varying inward pressure). Likewise, the inter-rater reliability of TA muscle thickness measurement was excellent (ICC2,1: 0.89-0.97) under same conditions. The mean of TA thickness showed the trend of decreasing significantly with increased inward pressures at all ankle joint angles (p<0.05). Conclusions: Use of this custom-made device with a force indicator is useful to accomplish the high intra- and inter-rater reliability of TA muscle thickness measurement at both ankle joint angles in reducing the measurement error.

Profile Measurements of Micro-aspheric Surfaces Using an Air-bearing Stylus with a Microprobe

  • Shibuya, Atsushi;Gao, Wei;Yoshikawa, Yasuo;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A novel scanning probe measurement system was developed to enable precise profile measurements of microaspheric surfaces. An air-bearing stylus with a microprobe was used to perform the surface profile scanning. The new system worked in a contact mode and had the capability of measuring micro-aspheric surfaces with large tilt angles and complex profiles. Due to limitations resulting from the contact mode, such as possible damage caused by the contact force and lateral resolution restrictions from the curvature of the probe tip, several system improvements were implemented. An air bearing was used to suspend the shaft of the probe to reduce the contact force, enabling fine adjustments of the contact force by changing the air pressure. The movement of the shaft was measured by a linear encoder with a scale attached to the actual shaft to avoid Abbe errors. A $50-{\mu}m-diameter$ glass sphere was bonded to the tip of the probe to improve the lateral resolution of the system. The maximum contact force of the probe was 10 mN. The shaft was capable of holding the probe continuously if the contact force was less than 40 mN, and the resolution of the probe could be as high as 10 nm, The performance of the new scanning probe measurement system was verified by experimental data.

Research Trend of Real-Time Measurement for Acting Force of TBM Disc Cutter (TBM 디스크커터의 실시간 하중 계측을 위한 연구현황)

  • Gyeongmin Ki;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.244-254
    • /
    • 2023
  • The disc cutter mounted on the Tunnel Boring Machine (TBM) is subjected to cutting forces in three dimensions during rock excavation process. It is widely known that the cutting forces increased with the strength of the rock mass, while the rolling force can be significantly increased when the disc cutter encounters abnormal rotation. Therefore, the cutting force acts on the disc cutter provides important information because it represents the conditions of the rock mass and the disc cutter. For these reasons, several studies have been conducted to measure the cutter forces in real-time. This paper introduces the current status of research on the cutter force measurement of TBM disc cutters, which has been reported in the literature. It is judged that this paper can be a useful reference material when similar technologies are developed in Korea in the future.