References
- Adamson, A. W., and A. P. Gast. 1998. Physical chemistry of surfaces. 6th ed. John Wiley and Sons, New York, USA
- Arvidson R S., I. E. Ertan,1. E. Amonette, and A. Luttge. 2003. Variation in calcite dissolution rates: A fundamental problem? Geochim. Cosmochim. Acta 67:1623-1634 https://doi.org/10.1016/S0016-7037(02)01177-8
- Davis,J. A., and J. O. Leckie. 1978.Surface ionization and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J.Colloid Interf. Sci. 67:90-107 https://doi.org/10.1016/0021-9797(78)90217-5
- Deryagin B., and L. Landau. 1941.Theory of the stability of stronglychargedlyophobicsols and of the adhesionof strongly charged particles in solutions of electrolytes. Acta Physicochimica URSS. 14:633-662
- Fuerstenau D. W. 1970. Interfacial processes in mineral/water systems. Pure Appl. Chem. 24:135-164 https://doi.org/10.1351/pac197024010135
- Fuerstenau, M. C. and B. R. Palmer. 1976. Anion floation of oxides and silicates. p. 148-196. In M. C. Fuerstenau (ed.) Flotation - A. M. Gaudin memorial volume. AIMMPE, New York, USA
- Herrera-Urbina R, and D. W. Fuerstenau. 1995.The effect of Pb(II) species, pH and dissolvedcarbonateon the zeta potentialat the quartz/aqueous solution interface. Colloid. Surface. A. 98:25-33 https://doi.org/10.1016/0927-7757(95)03110-Y
- Israelachvili J., and R. M. Pashley, 1982.The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300:341-342 https://doi.org/10.1038/300341a0
- James R. O., P. J. Stiglich, and T. W. Healy. 1975. Analysis of models of adsorption of metal ions at oxide/waterinterfaces. Farady Discuss. 59:142-156 https://doi.org/10.1039/dc9755900142
- James R. O., and T. W. Healy. 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface. J. Colloid Interf. Sci. 40:65-81 https://doi.org/10.1016/0021-9797(72)90174-9
- Jang, H. M., and D. W. Fuerstenau. 1986. The specific adsorption of alkaline-earth cations at the rutile/water interface. Colloids and Surface.21:235-257 https://doi.org/10.1016/0166-6622(86)80094-4
- Kallay N., D. Kovacevic, and A. Cop. 2000. Interpretation of interfacial equilibria on the basis of adsorption and electrokinetic data. p. 249-271. In N. Kallay (ed.) nterfacial dynamics. Surfactant Science Series (2000) Vol. 88. Marcel Dekker Inc.,New York, USA
- Kosmulski, M., R. Sprycha, and J. Szczypa. 2000. Surface complexation model for solid-liquid interfaces. p. 163-223. In N. Kallay (ed.). Interfacial dynamics. Surfactant Science Series (2000) Vol. 88. Marcel Dekker Inc., New York, USA
- Liu C., and P. M. Huang. 1999. Atomic force microscopy and surface characteristics of iron oxides formed in citrate solutions. Soil Sci. Soc. Am. J. 63:65-72 https://doi.org/10.2136/sssaj1999.03615995006300010011x
- McBride, M. B. 1994. Environmental chemistry of soils. Oxford University Press, NewYork.
- Rabinovich, Y. I., and R. H. Yoon. 1994. Use of atomic force microscope for the measurements of hydrophobic forces. Colloids and Surface. A. 93:263-273 https://doi.org/10.1016/0927-7757(94)02985-7
- Schulthess, C. P., and C. P. Huang. 1990. Adsorption of heavy metals by silicon and aluminum oxide surfaces. Soil Sci. Soc. Am. J. 54:679-688 https://doi.org/10.2136/sssaj1990.03615995005400030008x
- Stack A. G., Steven R. H., and C. M. Eggleston. 2001. Point of zero charge of a corundum-water interface probed with optical second harmonic generation (SHG) and atomic force microscopy (AFM). Geochim. Cosmochim. Acta. 65:3055-3063 https://doi.org/10.1016/S0016-7037(01)00649-4
- Van Riemsdijk, W. H., J. C. M. de Wit, L. K. Koopal, and G. H. Bolt. 1987. Metal ion adsorption on heterogeneous surfaces: adsorption models. J. Colloid Interf. Sci. 116:511-522 https://doi.org/10.1016/0021-9797(87)90147-0
- Verwey, E. J. W., and J. Th. G. Overbeek. 1948. Theory of the stability of lyophobic colloids. Elsevier, Amsterdam, Netherlands