• Title/Summary/Keyword: force integration

Search Result 359, Processing Time 0.027 seconds

Design of Semi-Active suspension system for Railway Vehicle with narrow gauge (협궤 차량용 준능동형 현가 시스템 설계)

  • Lee Nam-Jin;Kim Chul-Gun;Nam Hak-Gi
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.473-478
    • /
    • 2005
  • Active suspension system improves ride quality with optimized suspension force, generated by electric, hydrolic or pneumatic power and controlled by micro-processor under various operation condition of train, while Semi-Active susepsion system provides optimized and controlled characteristics of suspensions such as damping coefficient without external energy. The benefits fo Semi-Active suspension are no required power source and to be made compact with lower cost. Train with narrow gauge could be more unstable than one for normal or wide gauge, and it could be more vibrated than others one by external force such as aerodynamic force and track irregularity. So, the reduced ride quality could be improved with appling with Semi-active suspension system. In this report, the Semi-Active suspension system for narrow gauge train shall be proposed and to prepare the Roller Rig test of this train, integration of system, development of control algorithm and confirmation of its performance with simulation tool would be taken.

  • PDF

Dynamic characteristics of an elastically supported beam (탄성적으로 지지된 보의 동특성)

  • 정태진;박영조;홍동표
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.43-50
    • /
    • 1986
  • Numerical analysis has been made on the dynamic behavior of an elastically supported beam subjected to an axial force and solid viscosity when the frequency of external force passes through the first critical frequency of the beam. Within the Euler-Bernoulli beam theory the solutions are obtained by using finite Fourier sine transform and Laplace transformation methods with respect to space and time variables. Integrations involved in the theoretical results are carried out by Simpson's numerical integration rule. The result shows that the maximum value of the dynamic deflection are much affected by the value of a solid viscosity, an axial force, an elastic constant and ratio of .omega.$_{max}$/.omega.$_{1}$.

  • PDF

Topology Optimization of an Electromagnetic Coupler Considering Force Direction (힘의 방향성을 고려한 전자기 커플러의 위상 최적화)

  • Yang, Seung-Jin;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.230-235
    • /
    • 2006
  • The machine locking system is an important device for the safety of persons using the machine. In this study, a locking system using electromagnetic fields is proposed to decrease the defects and the cost for repairing and maintenance of the existing locking system using structural mechanism. We analyze the electromagnetic locking system and calculate the generated force considering direction by the finite element method. Also, we set up two design domains for the topology optimization; first domain is optimized to reduce the volume and the other is optimized to maximize the generated force keeping the volume, especially. The optimal design is obtained by integration of the two optimized results. An improved design is obtained by the optimal topology and it is confirmed by comparison with the initial locking system.

  • PDF

Continuous and discontinuous contact problem of a magneto-electro-elastic layer

  • Comez, Isa;Karabulut, Pembe Merve
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.67-77
    • /
    • 2022
  • In this study, frictionless continuous and discontinuous contact problems of a magneto-electro-elastic layer in the presence of the body force were discussed. The layer was indented by a rigid cylindrical insulating punch and supported by a rigid substrate without bond. Applying the Fourier integral transform technique, the general expressions of the problem were derived in the presence of body force. Thanks to the boundary conditions, the singular integral equations were obtained for both the continuous and the discontinuous contact cases. Gauss-Chebyshev integration formulas were used to transform the singular integral equations into a set of nonlinear equations. Contact width under the punch, initial separation distance, critical load, separation regions and contact stress under the punch and between the layer, and substrate were given as a result.

Dynamic Analysis of Guyed Tower Subjected to Random Waves (랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석)

  • 유정선;윤정봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

Robust market-based control method for nonlinear structure

  • Song, Jian-Zhu;Li, Hong-Nan;Li, Gang
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1253-1272
    • /
    • 2016
  • For a nonlinear control system, there are many uncertainties, such as the structural model, controlled parameters and external loads. Although the significant progress has been achieved on the robust control of nonlinear systems through some researches on this issue, there are still some limitations, for instance, the complicated solving process, weak conservatism of system, involuted structures and high order of controllers. In this study, the computational structural mechanics and optimal control theory are adopted to address above problems. The induced norm is the eigenvalue problem in structural mechanics, i.e., the elastic stable Euler critical force or eigenfrequency of structural system. The segment mixed energy is introduced with a precise integration and an extended Wittrick-Williams (W-W) induced norm calculation method. This is then incorporated in the market-based control (MBC) theory and combined with the force analogy method (FAM) to solve the MBC robust strategy (R-MBC) of nonlinear systems. Finally, a single-degree-of-freedom (SDOF) system and a 9-stories steel frame structure are analyzed. The results are compared with those calculated by the $H{\infty}$-robust (R-$H{\infty}$) algorithm, and show the induced norm leads to the infinite control output as soon as it reaches the critical value. The R-MBC strategy has a better control effect than the R-$H{\infty}$ algorithm and has the advantage of strong strain capacity and short online computation time. Thus, it can be applied to large complex structures.

A Study on the Detection of Cutter Runout Magnitude in Milling (밀링가공에서의 커더 런 아웃량 검출에 관한 연구)

  • Hwang, J.;Chung, E. S.;Lee, K. Y.;Shin, S. C.;Nam-Gung, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.151-156
    • /
    • 1995
  • This paper presents a methodology for real-time detecting and identifying the runout geometry of an end mill. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear,amplification of force variation and hence enlargement vibration amplitude. Form understanding of chip load change kinematics, the analytical sutting force model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the total cutting forces can be given as the algebraic multiplication of the Fourier transforms of the local cutting forces and the chip width density of the cutter. Experimental study are presented to validata the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance tolerance and surface quality for industriql application.

  • PDF

Measurement of Net Photosynthetic Rate in the Plug Stand (플러그묘 개체군의 순광합성속도 측정)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.311-316
    • /
    • 1997
  • Two methods were used to detrermine the net photosynthetic rate(NPR) in the plug stand using a wind tunnel for plug seedlings Production. One is called as the integration method in which NPR calculated by the use of air current speed and $CO^2$ concentration measured at any heights above the medium surface in a wind tunnel were summed. It was assumed that the air flow at any layer did not mix with the lower or upper air layer. The other is called as the diffusion method in which eddy diffusivities above the plug stand were used to determine the NPR in the plug stand. In this method, $CO^2$ above or inside the plug stand was assumed to be absorbed vertically. NPR determined by the diffusion method was 28~45% of the NPR calculated by the integration method. Considering the magnitude of NPR and the effects of the air current speed on NPR, the integration method would be adequate for the calculation of NPR in the plug stand. Maximum NPR determined using the integration method appeared at the air current speed of 0.7m $s^{-1}$. It was ascribed to the decreased diffusion resistances of $CO^2$ with the increasing air current speed. NPR at the rear region in plug stand was 20~34% lower than that at the front region. NPR sharply decreased with the increase of an elapsed time after the beginning of photoperiod. Therefore $CO^2$ enrichment would be effective to force the growth of plug seedlings in a semi-closed ecological system under artificial lighting.

  • PDF

Labor Market Integration and Transition to Marriage (노동시장통합과 결혼 이행)

  • Yoon, Ja-Young
    • Korea journal of population studies
    • /
    • v.35 no.2
    • /
    • pp.159-184
    • /
    • 2012
  • This study purports to analyze how individuals' labor market integration affect their transition to marriage. In doing so, I construct variables for job stability and continuity to represent labor market integration using labor force status and years of participation at the time of marriage and during the three years up to the point of marriage. In particular, I focus on differential effects of these labor market integration on the transition to marriage by cohorts: one for those who are likely to enter the labor market after the 1997 financial crisis and the other for those who are before the 1997 financial crisis. I used the Korean Labor and Income Panel Study and analyzed individuals aged above 18 in 2008. The main results are as follows. being currently employed and regular employment increases hazards of the first marriage for men but decreases them for women. long-term no-jobs decreases hazards of marriage for both women and men. long-term regular employment increases hazards of marriage for women but not for men at the statistically significant level. These effects vary by cohorts implying that recent economic and labor market instability deteriorated economic conditions for the youth making transitions to marriage.

  • PDF

Transient response of 2D functionally graded beam structure

  • Eltaher, Mohamed A.;Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.357-367
    • /
    • 2020
  • The objective of this article is investigation of dynamic response of thick multilayer functionally graded (FG) beam under generalized dynamic forces. The plane stress problem is exploited to describe the constitutive equation of thick FG beam to get realistic and accurate response. Applied dynamic forces are assumed to be sinusoidal harmonic, sinusoidal pulse or triangle in time domain and point load. Equations of motion of deep FG beam are derived based on the Hamilton principle from kinematic relations and constitutive equations of plane stress problem. The numerical finite element procedure is adopted to discretize the space domain of structure and transform partial differential equations of motion to ordinary differential equations in time domain. Numerical time integration method is used to solve the system of equations in time domain and find the time responses. Numerical parametric studies are performed to illustrate effects of force type, graduation parameter, geometrical and stacking sequence of layers on the time response of deep multilayer FG beams.