• Title/Summary/Keyword: force compensation

Search Result 285, Processing Time 0.025 seconds

Flow Force Compensation by Stepped Spool Valve (계단형상에 의한 스풀밸브의 유동력 보상)

  • 신원규;최현영;신효필;문의준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.145-150
    • /
    • 2003
  • This paper is on the study of flow force compensation for spool type valves. A simple method for flow force compensation using a stepped spool is presented in this paper. It is easy to manufacture the stepped spool of the presented method because the shape of it is simple. The method has another merit that the size of valve need not be increased. Actuating force required for driving the spool can be decreased through the compensation of flow force. The effect of presented method is predicted through CFD analysis. The results of the CFD analysis are also utilized for the optimization of step shape. The prototypes of flow force compensated Direct Drive Servo-Valve are manufactured, and the measurements of flow force are carried out. The measured effect of flow force compensation is very similar to that from the CFD analysis.

Flow force compensation by stepped spool (계단형상에 의한 스풀밸브의 유동력 보상)

  • 신원규;최현영;신효필;문의준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.745-749
    • /
    • 2002
  • This paper is on the study of flow force compensating method of spool type valve. A simple flow force compensating method using stepped spool is presented in this paper. It is easy to manufacture stepped spool in the presented method because the shape of it is simple. The method has the merit that the size of valve need not be increased. Actuating force required for driving means of spool can be decreased by the compensation of flow force. The effect of presented method is predicted through CFD analysis. The prototypes of flow force compensating Direct Drive Servo-Valve where the result of CFD analysis is reflected are manufactured, and the measurement of flow force is carried out. It is known from the measurement that the effect of flow force compensation is very similar to from CFD analysis.

  • PDF

Position/Force Control of Robotic Manipulator with Fuzzy Compensation (퍼지 보상을 이용한 로봇 매니퓰레이터의 위치/힘제어)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.36-51
    • /
    • 1995
  • An approach to robot hybrid position/force control, which allows force manipulations to be realized without overshoot and overdamping while in the presence of unknown environment, is given in this paper. The manin idea is to used dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify the unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resovled acceleration control method, dynamic compensation and PD control based on known robot dynamics, kinematics and estimated environment stiffness is introduced. To avoid overshoot the whole control system is constructed with overdamping. In the second stage, the unknown environment stiffness is identified by using fuzzy reasoning, where the fuzzy compensation rules are obtained priori as the expression of the relationship betweenenvironment stiffness and system. Based on the simulation result, comparison between cases with or without fuzzy identifications are given, which illustrate the improvement achieced.

  • PDF

A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control (반복학습제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik;Hwang, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

Mechanism and Control of Reaction Force Compensation of XY Linear Motion Stage System (XY 선형 모션 스테이지 시스템의 반발력 보상 기구와 제어)

  • Cho, Kyu-Jung;Choi, Dong-Soo;Ahn, Hyeong-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.599-607
    • /
    • 2011
  • In this paper, a reaction-force compensation system for an XY linear motion stage, without an additional external isolation structure or extra motors, is developed. This system consists of a movable magnet track, a spring, a dummy weight, and a dedicated sensor module that measures the relative positions of the movable magnet track with respect to the motor coil. The reaction force compensation system is modeled, and simulations are carried out to optimize design parameters such as the moving distance of the magnet track, the transmission force, the dummy weight, and the allowed size of the mechanism. An XY linear motion stage is built, incorporating the reaction force compensation system, and the performance of the system is verified experimentally. For acceleration and deceleration values of 10 m/$s^2$, 85% of the reaction force is absorbed by the reaction force compensation system.

A Study on the Cutter Runout Compensation by PI Control in End Mill Process (엔드밀 가공시 비례적분제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Lee, Ki-Yong;Hwang, Jun;Jung, Eui-Sik;Liang, Steven Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 1998
  • This paper presents in-process compensation methodology to eliminate cutter runout and improve machined surface quality. The cutter runout compensation system consists of the micro-positioning mechanism with the PZT (piezo-electric translator) which is embeded in the sliding table to manipulate the radial depth of cut in real time. For the implementation of cutter runout compensation methodology. cutting force adaptive control was proposed in the angle domain based upon PI (proportional-integral) control strategy to eliminate chip-load change in end milling process. Micro-positioning control due to adaptive acuation force response improves the machined surface quality by compensation or elimination of cutter runout induced cutting force variation. This results will provide lots of information to build-up the precision machining technology.

  • PDF

In-Process Cutter Runout Compensation Using Repetitive Learning Control

  • Joon Hwang;Chung, Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.13-18
    • /
    • 2003
  • This paper presents the in-process compensation to control cutter ronout and to improve the machined surface quality. Cutter ronout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by cutter ronout compensation.

Double Electro-Magnetic Force Compensation Method for the Micro Force Measurement (미소 힘 측정을 위한 이중 전자기힘 보상방법)

  • 최임묵;우삼용;김부식;김수현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.104-111
    • /
    • 2003
  • Micro force measurement is required more frequently for a precision manufacturing and investment in fields of precision industries such as semiconductor, chemistry and biology, and so forth. Null balance method has been introduced as an alternative of a loadcell. Loadcells have advantages in aspects of low cost and easy manufacturing, but have also the limitation in resolution and sensitivity to environment variations. In this paper, null balance method is explained and the dominant parameters related to system performances are mentioned. Null position sensor, electromagnetic system and controller are investigated. Also, the characteristic experiment is carried out in order to estimate the resolution and the measurement range. In order to overcome the limitation by the drift of position sensor and the performance of controller, double electromagnetic force compensation method is proposed and experimented. After controlling and filtering, the resolution under $\pm$ 1mg and measurement range over 300g could be obtained.

Cutter Runout Elimination in End Milling through Two-Axes PI Force Control (엔드밀 가공에서 2축 절사력 PI 제어를 통한 커터 런아웃 제거에 관한 연구)

  • Noh, Jong-Ho;Hwang, Joon;Liang, Steven Y.;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • This paper presents the in-process runout compensation methodology to improve the surface quality of circular contouring cut in end milling process. The runout compensation system is based on the manipulation of workpiece position relative to cutter in minimizing the cutting force oscillation at spindle frequency. the basic concept of this approach is realized on a end milling machine whose machining table accommodates a set of orthogonal translators perpendicular to the spindle axis. The system performed that measuring the runout related cutting force component, formulating PI controlling commands, and the manipulating the workpiece position to counteract the variation of chip load during the circular contouring cut. To evaluate the runout compensation system performance, experimental study based on the implementation of two-axes PI force control is presented in the context of cutting force regulation and part surface finish improvement.

  • PDF

Friction Force Compensation for Actuators of a Parallel Manipulator Using Gravitational Force (중력을 이용한 병렬형 머니퓰레이터 구동부의 마찰력 보상)

  • Lee Se-Han;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.609-614
    • /
    • 2005
  • Parallel manipulators have been used for a variety of applications, including the motion simulators and mechanism for precise machining. Since the ball screws used for linear motion of legs of the Stewart-Gough type parallel manipulator provide wider contact areas than revolute joints, parallel manipulators are usually more affected by frictional forces than serial manipulators. In this research, the method for detecting the frictional forces arising in the parallel manipulator using the gravitational force is proposed. First, the reference trajectories are computed from the dynamic model of the parallel manipulator assuming that it is subject to only the gravitational force without friction. When the parallel manipulator is controlled so that the platform follows the computed reference trajectory, this control force for each leg is equal to the friction force arising in each leg. It is shown that control performance can be improved when the friction compensation based on this information is added to the controller for position control of the moving plate of a parallel manipulator.