• Title/Summary/Keyword: food-borne pathogenic bacteria

Search Result 66, Processing Time 0.023 seconds

Distribution of Microorganisms in Seonsik and Saengsik (곡류 가공품중의 미생물 오염도 조사)

  • Kim Jung-Beom;Park Yong-Bae;Kang Jeong-Bok;Kim Jong-Chan
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.12-22
    • /
    • 2005
  • This study was performed to survey distribution of microorganisms and food-borne pathogenic bacterium in order to estimate microbiological safety in seonsik and saengsik. Total aerobic bacteria was detected over $10^5\;CFU/g$ in raw materials($4.3\%$) and products($35.7\%$) of saengsik. Coliforms were detected over $10^2\;CFU/g$ in seonsik products($27.3\%$) and in raw materials($4.3\%$) and products($35.7\%$) of saengsik. Cl. perfringens was detected in saengsik products($4.8\%$). B. cereus was detected in raw materials($12.5\%$) and products($18.2\%$) of seonsik and raw materials($13.0\%$) and products($23.8\%$) of saengsik. Concentration and detection rate of microorganisms in products were higher than raw materials. These results show some food hygiene problems but do not cause food poisoning because concentration of Clostridium perfringens and B. cereus were lower than $10^5\;CFU/g$.

Bacteriocidal Effect of CaO (Scallop-shell powder) on Natural Microflora and Pathogenic Bacteria in Lettuce (CaO (Scallop-shell powder)를 활용한 상추 중 존재하는 자연균총 및 주요 식중독균 제어)

  • Kim Il-Jin;Kim Yong-Soo;Ha Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.2
    • /
    • pp.60-64
    • /
    • 2006
  • In this study, we evaluated bacteriocidal effect of CaO (scallop shell powder) for the reduction of microorganism in lettuce, and compared with main chemical sanitizers such as chlorine, ethanol, hydrogen peroxide. As a result, the effectiveness of CaO showed dramatic reduction rate for total aerobic bacteria, Escherichia coli, Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, and Salmonella Typhimurium and were $5.9{\times}10^3,\;1.3{\times}10^5,\;5.9{\times}10^3,\;2.7{\times}10^6,\;3.6{\times}10^3,\;4.5{\times}10^3\;and\;2.6{\times}10^4$, respectively. CaO did not show better disinfecting efficiency than chlorine or hydrogen peroxide which were used as sanitizer. In Bacillus cereus case, it showed $10^6$ reduction rate, and were $10^2{\sim}10^5$ times better reduction than ethanol sanitizer. According to these results, CaO can alternate the currently used chemical sanitizers due to its natural origin as well as the effectiveness for sterilization.

Evaluation of the Antimicrobial Activities of 35 Seaweed Extracts against Pathogenic Bacteria and Candida sp. (35종 해조류 추출물의 병원성 세균 및 Candida sp. 진균에 대한 항균 활성 평가)

  • Kim, Mi-Sun;Kwon, Kyung-Jin;Lee, Min-Jin;Ahn, Seon-Mi;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.144-151
    • /
    • 2012
  • In the course of this study aimed at the development of functional food ingredients from seaweeds, the in vitro antimicrobial activities of methanol extracts prepared from 35 different seaweeds (17 phaeophyta, 11 rhodophyta and 7 chlorophyta) were determined against food-borne diseases and pathogenic microorganisms including multi-drug resistant (MDR) Pseudomonas sp. and Candida sp. Based on disc-diffusion assays at 500 g/disc concentration of the methanol extracts, Ishige okamurai, I. foliacea, Sargassum confusum, and S. yamade exhibited strong antibacterial activities in a broad-spectrum, except against Pseudomonas aeruginosa. In addition to the latter four seaweeds, Ecklonia stolonifera, E. cava and Eisenia bicyclis also demonstrated antifungal activity against C. albicans. Among these 8 selected seaweeds, I. okamurai, I. foliacea, and S. yamade exhibited strong hemolytic activity (55-93%) at 500 g/ml against human RBC. Organic solvent sequential fractions using hexane, ethylacetate and butanol, and water residues were prepared from the 8 selected seaweeds and their anti-Candida sp. activities were further determined. The ethylacetate and butanol fraction of I. okamurai, and the hexane fraction of I. foliacea demonstrated antifungal activity against MDR-pathogenic Candida sp. Although the solvent fractions had no activity against MDR-Pseudomonas sp., our results suggest that seaweeds, especially Ishige okamurai, I. foliacea, S. confusum, and S. yamade could be developed as broad-spectrum antimicrobial ingredients.

Growth Inhibition of Food-borne Bacteria by Juice and Extract of Ginger and Garlic (생강과 마늘 즙 및 추출물의 식중독 세균에 대한 증식저해작용)

  • 김미림;최경호;박찬성
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.10 no.2
    • /
    • pp.160-169
    • /
    • 2000
  • This study was conducted to understand the inhibitory garlic and ginger against the growth of food born pathogenic bacteria. Juice was prepared from the raw spices by using an electric homogenizer and membrane filter. Dry-powdered spices were treated with double distilled water and 70% ethanol to extract the antibacterial substances, respectively. Growth inhibitory effects of juice and extracts of the spices were monitored by using bacterial strains such as B. subtilis, L. moncytogenes, S. aureus,E. coli O157 : H7, P. aeruginosa, and S. typhimurium. On a solid medium where E. coli and S. aureus cells were grown, ginger juice formed inhibitory zone at the concentrations of 2-10% by paper disc test. The Bone formed by ginger juice was wider and more transparent than that formed by garlic juice on the same concentration.1. monocytogenes and B. subtilis were more sensitive to garlic juice than others, and stopped growing at 2% garlic juice. Ginger juice showed the growth inhibition by 30-50% at 1.0% concentration. On the contrast, P. aeruginosa which resisted to the garlic juice was the most sensitive to ginger juice. Water extract of garlic was not effective to inhibit the bacterial growth, while 2% ginger extract completely inhibited the growth of E. coli and S. aureus. Alcohol extract of ginger inhibited the growth of bacteria at the concentration of 0.3%. This growth inhibition is almost 10 times lower than that of the garlic extract. It was clear that ginger had more potential than garlic as an inhibitor to control the growth of the indicator organisms.

  • PDF

A rapid detection of Salmonella species using polymerization chain reaction and Southern hybridization (Polymerization chain reaction과 Southern hybridization을 이용한 Salmonella속 균의 신속한 검출)

  • Kim, Won-yong;Chang, Young-hyo;Park, Kyoung-yoon;Kim, Chul-joong;Shin, Kwang-soon;Park, Yong-ha
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.3
    • /
    • pp.531-536
    • /
    • 1995
  • Salmonella species are the most prevalent etiologic agents of food-borne acute gastroenteritis. Direct isolation of bacteria from the contaminated food, stool and animal tissues has been used for the diagnosis of salmonellosis routinely. However, isolation of bacteria is time consuming work and not so highly sensitive. In recent years, improved methods of polymerization chain reaction(PCR) and probe hybridization technique have led to the developement of diagnostic assays which employ to detect various human and animal pathogenic bacteria. In this study, we have performed the polymerization chain reaction to detect Salmonella pullorum from tissues and stool samples of chickens with two specific primers, ST5 and ST8C. The target DNA fragment of PhoE gene was successfully amplified from liver, spleen, pancreas, heart, lung, ovary, oviduct and feces samples. The amplified DNA fragments were hybridized with Salmonella typhymurium TA3000 PhoE probe by Southern hybridization. The PCR to amplify the PhoE gene was highly rapid and sensitive method to detect Salmonella pullorum from tissues and stool samples.

  • PDF

Virulence and Antimicrobial Resistance Gene Profiling of Salmonella Isolated from Swine Meat Samples in Abattoirs and Wet Markets of Metro Manila, Philippines

  • Rance Derrick N. Pavon;Windell L. Rivera
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.390-402
    • /
    • 2023
  • Salmonella are Gram-negative pathogenic bacteria commonly found in food animals such as poultry and swine and potentially constitute risks and threats to food safety and public health through transmissible virulence and antimicrobial resistance (AMR) genes. Although there are previous studies in the Philippines regarding genotypic and phenotypic AMR in Salmonella, there are very few on virulence and their associations. Hence, this study collected 700 Salmonella isolates from swine samples in abattoirs and wet markets among four districts in Metro Manila and characterized their genotypic virulence and β-lactam AMR profiles. Gene frequency patterns and statistical associations between virulence and bla genes and comparisons based on location types (abattoirs and wet markets) and districts were also determined. High prevalence (>50%) of virulence genes was detected encompassing Salmonella pathogenicity islands (SPIs) 1-5 suggesting their pathogenic potential, but none possessed plasmid-borne virulence genes spvR and spvC. For bla, blaTEM was detected with high prevalence (>45%) and revealed significant associations to four SPI genes, namely, avrA, hilA, mgtC, and spi4R, which suggest high resistance potential particularly to β-lactam antibiotics and relationships with pathogenicity that remain mechanistically unestablished until now. Lastly, comparisons of location types and districts showed variations in gene prevalence suggesting effects from environmental factors throughout the swine production chain. This study provides vital data on the genotypic virulence and AMR of Salmonella from swine in abattoirs and wet markets that suggest their pathogenicity and resistance potential for policymakers to implement enforced surveillance and regulations for the improvement of the Philippine swine industry.

Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid (Corosolic acid에 의한 Staphylococcus aureus의 생장 및 생물막 형성 저해)

  • Yum, Su-Jin;Kim, Seung Min;Yu, Yeon-Cheol;Jeong, Hee Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.146-150
    • /
    • 2017
  • Staphylococcus aureus is a pathogenic bacterium that causes food poisoning, exhibits a strong capacity to form biofilm, and is highly resistant to antimicrobial agents. The purpose of this study was to investigate the antimicrobial characteristics of corosolic acid against S. aureus. S. aureus showed high susceptibility to corosolic acid in a concentration-dependent manner. The minimum inhibitory concentration and colony-forming ability determined by the broth microdilution method showed that corosolic acid had strong antimicrobial activity against the bacteria. The diameters of the inhibition zone and numbers of colony forming units at each concentration of corosolic acid were also measured. In addition, corosolic acid displayed potent biofilm inhibition activity against S. aureus at concentrations below its minimum inhibitory concentration. These results suggest that corosolic acid can be used to effectively prevent biofilm formation by S. aureus, thereby making S. aureus more susceptible to the action of antimicrobials.

Inhibitory Effect of Aqueous Chlorine Dioxide on Survival of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in Pure Cell Culture (이산화염소가 E. coli O157:H7, Salmonella typhimurium, Listeria monocytogenes의 생존에 미치는 영향)

  • Youm, Hyoung-Jun;Ko, Jong-Kwan;Kim, Mee-Ree;Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.514-517
    • /
    • 2004
  • O157:H7, Salmonella typhimurium, Listeria monocytogenes were treated with aqueous chlorine dioxide to elucidate effect of aqueous chlorine dioxide treatment on major food-borne pathogenic bacteria. Survival plot of E.coli O157:H7 at 5 ppm chlorine dioxide showed typical first-order rate. After 5 min of treatment, cell number decreased by 1.5 log cycle. Survival plot slope gave D value of 3.37 min. S. typhimurium and L. monocytogenes showed biphasic curve. Aqueous chlorine dioxide treatment on S. typhimurium and L. monocytogenes resulted in bactericidal effect for 5 min, and thereafter no effect was observed under experimental conditions of this study. These results suggest concentration of chlorine dioxide is more important than treatment time, and 5 ppm chlorine dioxide treatment is not sufficient for sanitizing fresh vegetables.

Bactericidal Effects of Food-borne Bacteria using Chlorine Dioxide and Electrolyzed Water (이산화염소수와 전해수를 이용한 식중독균의 살균효과)

  • Lee, Hye-Rin;Kim, Su-Jin;Bang, Woo-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.232-237
    • /
    • 2022
  • The present study investigated the bactericidal effects of chlorine dioxide (CD) and electrolyzed water (EW) on pathogenic bacteria, such as Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli O157:H7, by treatment them with CD and EW, respectively, for 0, 2, 4, 6, 8, and 10 min. Additionally, the sensitivities of Gram-positive (B. cereus and S. aureus) and Gram-negative (S. Typhimurium and E. coli O157:H7) to CD and EW were compared, respectively. In CD, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 1.85±0.64, 2.06±0.85, 2.26±0.89, and 2.59±0.40 min, respectively. In EW, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 2.13±0.32, 1.64±0.64, 1.71±0.32, and 1.86±0.36 min, respectively. All strains decreased consistently for 10 min in both CD and EW. However, the D-values of each bacterial species did not differ significantly between CD and EW (P>0.05). When comparing the bactericidal effect of CD and EW, no difference in D-value was observed, even though the pH and available chlorine concentration of CD were significantly lower than those of EW. These data could be used for the application of CD and EW in the food industry, considering characteristics such as the selection of optimal disinfectants, determination of optimal concentrations, and sensitivity to disinfection targets.

Growth Inhibition of Listeria monocytogenes by Weissella spp. from Kimchi Through Real-time PCR (실시간 정량 PCR을 통한 김치 유래 Weissella spp.에 의한 Listeria monocytogenes 생육 억제)

  • Lee, Young-Duck;Kim, Dae-Yong;Park, Jong-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.103-108
    • /
    • 2015
  • Weissella spp. from traditional Korean foods of Kimchi were isolated and characterized against food-borne pathogenic Listeria monocytogens. The isolates were identified as W. cibaria 0D17 and W. confusa 0D23 from Kimchi by the biochemical characteristics and 16S DNA sequencing. The culture solutions of the isolates adjusted to pH 7.0 showed L. monocytogens inhibition. To analyze the quantitative detection of L. monocytogenes, real-time PCR was performed according to the SYBR Green I method. The isolates grew well and L. monocytogens did not grow during the co-culture with those strains at $37^{\circ}C$. Therefore, W. cibaria 0D17 and W. confusa 0D23 might be the candidates as the functional lactic acid bacteria for improving food safety.