Inhibitory Effect of Aqueous Chlorine Dioxide on Survival of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in Pure Cell Culture

이산화염소가 E. coli O157:H7, Salmonella typhimurium, Listeria monocytogenes의 생존에 미치는 영향

  • Youm, Hyoung-Jun (Department of Food Science and Technology, Chungnam National University) ;
  • Ko, Jong-Kwan (Department of Food Science and Technology, Chungnam National University) ;
  • Kim, Mee-Ree (Department of Food Science and Nutrition, Chungnam National University) ;
  • Song, Kyung-Bin (Department of Food Science and Technology, Chungnam National University)
  • Published : 2004.06.30

Abstract

O157:H7, Salmonella typhimurium, Listeria monocytogenes were treated with aqueous chlorine dioxide to elucidate effect of aqueous chlorine dioxide treatment on major food-borne pathogenic bacteria. Survival plot of E.coli O157:H7 at 5 ppm chlorine dioxide showed typical first-order rate. After 5 min of treatment, cell number decreased by 1.5 log cycle. Survival plot slope gave D value of 3.37 min. S. typhimurium and L. monocytogenes showed biphasic curve. Aqueous chlorine dioxide treatment on S. typhimurium and L. monocytogenes resulted in bactericidal effect for 5 min, and thereafter no effect was observed under experimental conditions of this study. These results suggest concentration of chlorine dioxide is more important than treatment time, and 5 ppm chlorine dioxide treatment is not sufficient for sanitizing fresh vegetables.

본 연구에서는 이산화염소 처리를 이용하여 대표적 식중독 미생물인 E. coli O157:H7, Salmonella typhimurium, Listeria monocytogenes에 대한 살균 효과를 측정하였다. Pure cell culture 상태에서의 E. coli는 이산화염소 5 ppm에서 D-value가 3.37분으로 측정되었다. 그러나 Salmonella와 Listeria의 생존곡선은 이산화염소 처리시간에 따라 biphasic curve를 나타내었다. 이러한 biphasic curve는 5분까지의 처리로 해당 농도에서의 살균효과는 대부분 나타나고 그 이후는 효과가 없음을 보여주었다. 특히 Listeria의 5ppm과 10ppm의 처리결과는 이산화염소의 처리에 영향을 주는 인자 중 처리 시간보다는 처리농도가 더 큰 영향을 끼치는 것을 나타내었다. 본 연구 결과는 이산화염소 허용치인 5ppm이 신선채소에 대한 미생물학적 안전성을 확보 하기엔 부족하다는 것을 시사한다.

Keywords

References

  1. Kraybill HF. Origin, classification, and distribution of chemicals in drinking water with an assessment of their carcinogenic potential. Vol. 1, pp. 211-228. In: Water Chlorination. Jolly RL (ed). Ann Arbor Science, Ann Arbor, MI, USA (1978)
  2. Kim JM. Use of chlorine dioxide as a biocide in the food industry. Food Ind. Nutr. 6: 33-39 (2001)
  3. Gordon G, Kieffer RG, Rosenblatt DH. The chemistry of chlorine dioxide. Vol. 15, pp. 202-286. In: Progress in Inorganic Chemistry. Lippard SJ (ed). John Wiley and Sons, New York, NY, USA (1972)
  4. Moore G.S, Calabrese EJ, DiNardi SR, Tuthill RW. Potential health effect of chlorine dioxide as a disinfectant in potable water supplies. Med. Hypoth. 4: 481-496 (1978) https://doi.org/10.1016/0306-9877(78)90017-8
  5. Symons JM, Stevens AA, Clark BM, Geldreich EE, Love OT, DeMarco J. Treatment technique for controlling trihalomethanes in drinking water. US EPA-600 2-81-156. US Government Printing Office, Washington, DC, USA (1981)
  6. Buchanam RL, Doyle MP. Foodborne disease significance of Escherichia coli O157:H7 and other enterohemorrhagic E. coli. Food Technol. 51: 69-76 (1997)
  7. Beuchat LR. Survival of enterohemorrhagic Escherichia coli O157:H7 in bovine feces applied to lettuce and effectiveness of chlorinated water as a disinfectant. J. Food Prot. 62: 845-849 (1999)
  8. Fisher TL, Golden DA. Fate of Escherichia coli O157:H7 in ground apples used in cider production. J. Food Prot. 61: 1372-1374 (1998)
  9. Diaz C, Hotchkiss JH. Comparative growth of Escherichia coli O157:H7, spoilage organisms and shelf-life of shredded iceberg lettuce stored under modified atmospheres. J. Sci. Food Agric. 70: 433-438 (1996) https://doi.org/10.1002/(SICI)1097-0010(199604)70:4<433::AID-JSFA518>3.0.CO;2-Q
  10. Rosario BA, Beuchat LR. Survival and growth of enterohemorrhagic Escherichia coli O157:H7 in cantaloupe and watermelon. J. Food Prot. 58: 105-107 (1995)
  11. Abdul-Raouf UM, Beuchat LR, Ammar MS. Survival and growth of Escherichia coli O157:H7 on salad vegetables. Appl. Environ. Microbiol. 59: 1999-2006 (1993)
  12. Centers for Disease Control and Prevention (CDC). Foodborne outbreaks of enterotoxigenic Escherichia coli -Rhode Island and New Hampshire. Morbid. Mortal. Weekly Rep. 43: 81-89 (1994)
  13. Centers for Disease Control and Prevention (CDC). Outbreaks of Escherichia coli O157:H7 infection associated with eating alfalfa sprouts-Michigan and Virginia. Morbid. Mortal. Weekly Rep. 46: 741-745 (1997)
  14. Bailey JS, Cox NA, Craven SE, Cosby DE. Serotype tracking of Salmonella through integrated broiler chicken operations. J. Food. Prot. 65: 724-745 (2002)
  15. Mikolajczyk A, Radkoeski M. Salmonella spp. on chicken carcasses in processing plant in Poland. J. Food Prot. 65: 1475-1479 (2002)
  16. Rose BE, Hill WE, Umholtz R, Ransom GM, James WO. Testing for Salmonella in raw meat and poultry products collected at federally inspected establishmeats in the United States. J. Food Prot. 65: 937-947 (2002)
  17. Tompkin RB. Control of Liseria monocytogenes in the food-processing environmental. J. Food Prot. 65: 709-725 (2002)
  18. Kanuganti SR, Wesley IV, Reddy PG, Mckean J, Hurd HS. Detection of Listeria monocytogenes in pigs and pork. J. Food Prot. 65: 1470-1474 (2002)
  19. American Public Health Association. Standard methods for the examination of water and wastewater. 19th ed. Method 4-54. American Public Health Association, Washington, DC, USA (1995)
  20. Singh N, Singh RK, Bhunia AK. Sequential disinfection of Escherichia coli O157:H7 inoculated alfalfa seed before and during sprouting using aqueous chlorine dioxide, ozonated water, and thyme oil. Lebensm.-Wiss. u.-Technol. 36: 235-243 (2003) https://doi.org/10.1016/S0023-6438(02)00224-4
  21. Singh N, Singh RK, Bhunia AK, Stroshine RL. Efficacy of chlorine dioxide, ozone and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensm.-Wiss. u.-Technol. 35: 720-729 (2002) https://doi.org/10.1006/fstl.2002.0933
  22. Noss CI, Hauchman FS, Olivieri VP. Chlorine dioxide reactivity with proteins. Water Res. 20: 351-356 (1986) https://doi.org/10.1016/0043-1354(86)90083-7
  23. Ghanbari HA, Wheeler WB, Kirk JR. Reactions of aqueous chlorine and chlorine dioxide with lipids: Chlorine incorporation. J. Food Sci. 47: 482-485 (1982) https://doi.org/10.1111/j.1365-2621.1982.tb10108.x
  24. Bernarde MA, Snow WB, Olivieri VO, Davidson B. Kinetics and mechanism of bacterial disinfection by chlorine dioxide. Appl. Microbiol. 15: 257-265 (1967)