• Title/Summary/Keyword: food sensor

Search Result 249, Processing Time 0.024 seconds

Optimization of Quartz Crystal Microbalance-Precipitation Sensor Measuring Acetylcholinesterase Activity

  • Kim, Nam-Soo;Park, In-Seon;Kim, Dong-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1523-1528
    • /
    • 2006
  • The optimization of a batch-type quartz crystal microbalance (QCM)-precipitation sensor measuring acetylcholinesterase (AChE) activity was conducted. To covalently bind AChE onto the gold electrode of a QCM surface, glutaraldehyde cross-linking to a cystamine self-assembled monolayer was tried at different cystamine concentrations. At the optimum conditions of the QCM-precipitation sensor, 0.1 M potassium phosphate buffer (pH 8.0), containing 0.01% Tween 80, was used as the reaction buffer, with the enzyme amount of 5 units for immobilization and the substrate concentration of 50 mg/ml. The current biosensor might find a future applicability to the sum parameter detection on organophosphorus and carbamate pesticides.

Discriminant Analysis of Marketed Liquor by a Multi-channel Taste Evaluation System

  • Kim, Nam-Soo
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.554-557
    • /
    • 2005
  • As a device for taste sensation, an 8-channel taste evaluation system was prepared and applied for discriminant analysis of marketed liquor. The biomimetic polymer membranes for the system were prepared through a casting procedure by employing polyvinyl chloride, bis (2-ethylhexyl)sebacate as plasticizer and electroactive materials such as valinomycin in the ratio of 33:66:1, and were separately attached over the sensitive area of ion-selective electrodes to construct the corresponding taste sensor array. The sensor array in conjunction with a double junction reference electrode was connected to a high-input impedance amplifier and the amplified sensor signals were interfaced to a personal computer via an A/D converter. When the signal data from the sensor array for 3 groups of marketed liquor like Maesilju, Soju and beer were analyzed by principal component analysis after normalization, it was observed that the 1st, 2nd and 3rd principal component were responsible for most of the total data variance, and the analyzed liquor samples were discriminated well in 2 dimensional principal component planes composed of the 1st-2nd and the 1st-3rd principal component.

Design of a Tag Antenna for UHF RFID Food Systems

  • Shin, Dong-Beom;Lee, Jung Nam;Lee, Heyung-Sub;Lee, Sang-Yeoun;Kim, Byeong-Sam
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.208-213
    • /
    • 2013
  • This paper proposes a tag antenna for radio frequency identification (RFID) food system. The RFID tag antenna is designed and fabricated based on the rectangular loop concept used in the UHF band (Korean and Japanese standards, 916.7-923.5MHz). The proposed tag antenna is composed of a radiation patch, sensor tag chip, temperature sensor, oscillator, and battery. We conjugated matching between the tag antenna and the sensor tag using a U-shaped stub. Details of the proposed tag antenna design and the simulated and measured results are presented and discussed.

Status of ICT Convergence Smart Quality Distribution Technology for Food Quality and Safety Management

  • Kim, Jong Hoon;Kim, Ji Young;Kim, Byeong Sam
    • Agribusiness and Information Management
    • /
    • v.6 no.2
    • /
    • pp.13-23
    • /
    • 2014
  • The world is in the process of a structural change related to ICT convergence knowledge industries. ICT is leading to the creation of new products and services, and is making our lives more convenient, safer, and more efficient. In advanced countries, many studies have been conducted with the goal of developing new business models converged with ICT, and this is also the case in the food industry. Korea possesses world-leading ICT, and if this ICT is applied to the food industry, a world-class new business model can be developed. The u-Food System, which is in the process of development in Korea, is a next-generation food system that can allow food providers, consumers, and distributors to access various types of information about food products, including traceability, distribution, safety, quality, and freshness, and manage this information. It is a future food system that converges ICT, biotechnology and sensing technology with food. Based on the u-Food System, this paper will introduce the status of current smart quality distribution technologies that converge ICT (such as sensor tag, sensor network, LBS, GIS, and CDMA) with food technologies (such as traceability, quality, distribution management) to manage the safety and quality of fresh food in the distribution process.

Detection of Food-Grade Hydrogen Peroxide by HRP-Biocomposite Modified Biosensors

  • Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A new amperometric biosensor has been developed for the detection of hydrogen peroxide ($H_2O_2$). The sensor was fabricated through the one-step deposition of a biocomposite layer onto a glassy carbon electrode at neutral pH. The biocomposite, as a $H_2O_2$ sensing element, was prepared by the electrochemical deposition of a homogeneous mixture of graphene oxide, aniline, and horseradish peroxidase. The experimental results clearly demonstrated of that the sensor possessed high electrocatalytic activity and responded to $H_2O_2$ with a stable and rapid manners. Scanning electron microscopy, cyclic voltammetry, and amperometry were performed to optimize the characteristics of the sensor and to evaluate its sensing chemistry. The sensor exhibited a linear response to $H_2O_2$ in the range of 10 to $500{\mu}M$ concentrations, and its detection limit was calculated to be $1.3{\mu}M$. The proposed sensing-chemistry strategy and the sensor format were simple, cost-effective, and feasible for analysis of "food-grade $H_2O_2$" in food samples.

A Glutamate Oxidase-based Biosensor for the Determination of Glutamate (Glutamate Oxidase를 이용한 Glutamate 측정용 Biosensor의 개발)

  • Lee, Young-Chun;Lee, Sang-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1075-1081
    • /
    • 1997
  • The objective of this research was to develop a glutamate enzyme sensor for rapid determinations of glutamate in samples. Glutamate oxidase was immobilized onto activated nylon, chitosan and other membranes. The enzymic and nonactin membranes were attached to an ammonia electrode to detect ammonia generated by the reaction between glutamate oxidase and glutamate. The enzyme immobilized on activated nylon membrane was stable for 2 months, and was able to perform about 250 glutamate determinations without losing activities. The enzyme immobilized on chitosan membrane had higher enzyme activity, but was not as much stable as that immobilized on nylon. The glutamate biosensor was able to accurately determine $0.1{\sim}5\;mM$ of glutamate in samples.

  • PDF

Determination of Ethanol in Alcoholic Beverages by Alcohol Oxidase Sensor (Alcohol oxidase 효소센서를 이용한 알코올 음료 중의 에탄올 정량)

  • Lee, Ok-Kyung;Kim, Tai-Jin;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.266-269
    • /
    • 1995
  • In order to measure alcohol contents with speed and accuracy, alcohol sensor was prepared. Alcohol sensor was made by connecting with oxygen electrode after immobilized alcohol oxidase on nylon net with glutaraldehyde. Alcohol was determined by changing the rate of dissolved oxygen consumption using D.O. analyzer. Alcohol contents in alcoholic beverages were determined under the optimum conditions. The results were 0.71% in low-alcohol beverage, $4{\sim}5%$ in beers, 10.06% in wine, 16.12% in chungju, 25.71% in soju, and 6.18% in takju, respectively. The values by alcohol sensor showed an excellent correlation(r=0.999) with GC method.

  • PDF

Development of Pressure Monitoring System and Pressure Changes during Kimchi Fermentation (김치발효 중 가스압력 변화와 압력측정시스템의 개발)

  • Lee, Young-Jin;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.686-689
    • /
    • 1990
  • For the monitoring of kimchi fermentation states, pressure detecting sensor and monitoring device were designed and fabricated. The system was consisted of an air tight fermenting tube(31.5 ml), strain gauge type pressure sensor and signal processing device built with operational amplifier and A/D converter, and interfaced to personal computer. Chiness cabbage kimchi was fermented in the plastic container($150{\times}220{\times}160mm$) at $25^{\circ}C\;and\;30^{\circ}C$. The fermentation was monitored with fermenting tubes containing kimchi. The pressure based kimchi fermentation curve was constructed and showed a typical kimchi curing curve having 2 stepwise pressure increasing pattern.

  • PDF

Battery-less Pork Freshness Monitoring Based on High-Efficiency RF Energy Harvesting

  • Nguyen, Nam Hoang;Lam, Minh Binh;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.293-302
    • /
    • 2020
  • Food safety has emerged as a growing concern for human health in recent times. Consuming contaminated food may lead to serious health problems, and therefore, a system for monitoring food freshness that is both non-detrimental to the quality of food and highly accurate is required to ensure that only high-quality fresh food packages are provided to the customers. This paper proposes a method to monitor and detect food quality using a compact smart sensor tag. The smart tag is composed of three ultra-low-power sensors, which monitor four major indicators of food freshness: temperature, humidity, and the concentrations of ammonia and hydrogen sulfide gases. An RF energy scavenging circuit is integrated into the smart sensor tag to harvest energy from radio waves at a high frequency of 13.56 MHz to supply sufficient power to the tag. Experimental results show that the proposed energy harvester can efficiently obtain energy at a distance of approximately 40 cm from a 4 W reader. In addition, the proposed smart sensor tag can operate without any battery, thereby eliminating the requirement of frequent battery replacement and consequently decreasing the cost. Meanwhile, the freshness of preserved pork is continuously monitored under two conditions--room temperature and refrigerator temperature--both of which are the most common temperatures under which food is generally stored. The food-monitoring experiments are conducted over a period of one week using the proposed battery-less tag. Based on the experimental results, the food assessment is classified into four categories: fresh, normal, low, and spoiled.

Simple Iysine sensing system using $CO_{2}$ electrode and enzyme immobilized to CNBr-activated sepharose 4B

  • Kim, Eun-Jung;Koh, Kwang-Nak;Choi, Myung-Sook
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.437-444
    • /
    • 1997
  • A potentiometric L-lysine-selective sensor is described for the direct determination of lysine. The sensor system is based on a carbon dioxide gas sensing electrode and an L-lysine decarboxylase immobilized to CNBr-activated sepharose 4B. A highly selective L-lysine sensor has been prepared with immobilizing enzyme slurry put into reaction buffer solution. The optimum conditions for the measurement were evaluated by various experiments. This sensor exhibits a linear response to L-lysine concentrations from $10^{-4}M$ to $10^{-1}M$. Response time of this lysine sensor is shorter than 30secs and the immobilized enzyme slurry is stable over one year.

  • PDF