Browse > Article

Optimization of Quartz Crystal Microbalance-Precipitation Sensor Measuring Acetylcholinesterase Activity  

Kim, Nam-Soo (Food Function Research Division, Korea Food Research Institute)
Park, In-Seon (Food Function Research Division, Korea Food Research Institute)
Kim, Dong-Kyung (Food Function Research Division, Korea Food Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.10, 2006 , pp. 1523-1528 More about this Journal
Abstract
The optimization of a batch-type quartz crystal microbalance (QCM)-precipitation sensor measuring acetylcholinesterase (AChE) activity was conducted. To covalently bind AChE onto the gold electrode of a QCM surface, glutaraldehyde cross-linking to a cystamine self-assembled monolayer was tried at different cystamine concentrations. At the optimum conditions of the QCM-precipitation sensor, 0.1 M potassium phosphate buffer (pH 8.0), containing 0.01% Tween 80, was used as the reaction buffer, with the enzyme amount of 5 units for immobilization and the substrate concentration of 50 mg/ml. The current biosensor might find a future applicability to the sum parameter detection on organophosphorus and carbamate pesticides.
Keywords
Optimization; QCM-precipitation sensor; measurement; AChE activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Abad, J. M., F. Pariente, L. Hernandez, H. D. Abruna, and E. Lorenzo. 1998. Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor. Anal. Chem. 70: 2848-2855   DOI   ScienceOn
2 Martinez, C. R., R. E. Gonzales, A. M. J. Moran, and H. J. Mendez. 1992. Sensitive method for the determination of organophosphorus pesticides in fruits and surface waters by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. 607: 37-45   DOI   ScienceOn
3 Babacan, S., P. Pivarnik, S. Letcher, and A. G. Rand. 2000. Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens. Bioelectron. 15: 615-621   DOI   ScienceOn
4 Karalliedde, L. 1999. Organophosphorus poisoning and anaesthesia. Anaesthesia 54: 1073-1088   DOI
5 Alfonta, L., E. Katz, and I. Willner. 2000. Sensing of acetylcholine by a tricomponent-enzyme layered electrode using faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Anal. Chem. 72: 927-935   DOI   ScienceOn
6 Volotovskky, V. and N. Kim. 2003. Ion-sensitive field effect transistor-based multienzyme sensor for alternative detection of mercury ions, cyanide, and pesticide. J. Microbiol. Biotechnol. 13: 373-377
7 Sigma. 2003. Sigma Diagnostics Procedure No. 420 for ChE Assay
8 Bachmann, T. T., B. Leca, F. Villatte, J.-L. Marty, D. Fournier, and R. D. Schmid. 2000. Improved multianalyte detection of organophosphates and carbamates with disposable multiresidue biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural network. Biosens. Bioelectron. 15: 193-201   DOI   ScienceOn
9 Skladal, P. and P. Mascini. 1992. Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocyanine-modified composite electrodes and immobilized cholinesterases. Biosens. Bioelectron. 7: 335-343   DOI   ScienceOn
10 Alfonta, L., A. K. Singh, and I. Willner. 2001. Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal. Chem. 73: 91-102   DOI   ScienceOn
11 Kim, N., K.-R. Park, I.-S. Park, Y.-J. Cho, and Y. M. Bae. 2005. Application of a taste evaluation system to the monitoring of kimchi fermentation. Biosens. Bioelectron. 20: 2283-2291   DOI   ScienceOn
12 Park, I.-S. and N. Kim. 1998. Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal. Biosens. Bioelectron. 13: 1091-1097   DOI   ScienceOn
13 Martin, S. P., J. M. Lynch, and S. M. Reddy. 2002. Optimisation of the enzyme-based determination of hydrogen peroxide using the quartz crystal microbalance. Biosens. Bioelectron. 17: 735-739   DOI   ScienceOn
14 Wang, J., L. Chen, A. Mulchandani, P. Mulchandani, and W. Chen. 1999. Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis 11: 866-869   DOI
15 Jeyaratnam, J. 1990. Pesticides poisoning: As a major global health problem. World Health Stat. Quarter. 43: 139-144
16 Reddy, S. M., J. P. Jones, T. J. Lewis, and P. M. Vadgama. 1998. Development of an oxidase-based glucose sensor using thickness-shear mode quartz crystals. Anal. Chim. Acta 363: 203-213   DOI   ScienceOn
17 Karousos, N. G., S. Aouabdi, A. S. Way, and S. M. Reddy. 2002. Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Anal. Chim. Acta 469: 189-196   DOI   ScienceOn
18 Mulchandani, A., W. Chen, P. Mulchandani, J. Wang, and K. R. Rogers. 2001. Biosensors for direct determination of organophosphate pesticides. Biosens. Bioelectron. 16: 225-230   DOI   ScienceOn
19 Hill, E. F. and W. J. Fleming. 1982. Anticholinesterase poisoning of birds: Field monitoring and diagnosis of acute poisoning. Environ. Toxicol. Chem. 1: 27-38   DOI
20 Pylypiw, H. M. 1993. Rapid gas chromatographic method for the multiresidue screening of fruits and vegetables for organochlorine and organophosphate pesticides. J. AOAC Intl. 76: 1369-1373
21 Roger, K. R., Y. Wang, A. Mulchandani, P. Mulchandani, and W. Chen. 1999. Organophosphorus hydrolase-based fluorescence assay for organophosphate pesticides. Anal. Chem. 65: R40-R54   DOI   ScienceOn
22 Pariente, F., C. LaRosa, F. Galan, L. Hernandez, and E. Lorenzo. 1996. Enzyme support systems for biosensor applications based on gold-coated nylon meshes. Biosens. Bioelectron. 11: 1115-1128   DOI   ScienceOn
23 Park, I.-S., D.-K. Kim, and N. Kim. 2004. Responses of chloramphenicol immunosensor to analyte types. J. Microbiol. Biotechnol. 14: 1157-1162
24 Pyun, J. C., H. Beutel, J.-U. Meyer, and H. H. Ruf. 1998. Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer. Biosens. Bioelectron. 13: 839-845   DOI   ScienceOn
25 Mulchandani, P., A. Mulchandani, I. Kaneva, and W. Chen. 1999. Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens. Bioelectron. 14: 77-85   DOI   ScienceOn
26 Kim, N., R. Haginoya, and I. Karube 1996. Characterization and food application of an amperometric needle-type L-lactate sensor. J. Food Sci. 61: 286-290   DOI   ScienceOn
27 Larsen, J. C. and G. Pascal. 1998. Workshop on the applicability of the ADI to infants and children: Consensus summary. Food Addit. Contam. (Suppl) 15: 1-9
28 Rappaport, F., J. Fischl, and N. Pinto. 1959. An improved method for the estimation of cholinesterase activity in serum. Clin. Chim. Acta 4: 227-230   DOI   ScienceOn