• Title/Summary/Keyword: food resources

Search Result 7,531, Processing Time 0.042 seconds

Compositions and Contents Anthocyanins in Blueberry (Vaccinium corymbosum L.) Varieties (블루베리(Vaccinium corymbosum L.) 품종별 안토시아닌 조성 및 함량)

  • Lee, Min-Ki;Kim, Heon-Woong;Lee, Seon-Hye;Kim, Young Jin;Jang, Hwan-Hee;Jung, Hyun-Ah;Hwang, Yu-Jin;Choe, Jeong-Sook;Kim, Jung-Bong
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.3
    • /
    • pp.184-190
    • /
    • 2016
  • BACKGROUND: Anthocyanins, potential health-promoting compounds, were major natural pigment in the blueberry (Vaccinium corymbosum L.). The objectives of this study was to investigate anthocyanin glycosides in the blueberry varieties.METHODS AND RESULTS: A total of seventeen anthocyanins were identified from highbush blueberry using HPLC (representatives, 530 nm) and ESI-MS in positive ion mode. The individual anthocyanins are containing cyanidin, delphinidin, malvidin, peonidin, and petunidin moieties which are acylated with aliphatic acid (acetic acid) and conjugated with sugar moieties (arabinose, galactose, and glucose). Among them, delphinidin 3-O-galactoside (D3Ga), peonidin 3-O-glucoside (Pn3G) + malvidin 3-O-galactoside (M3Ga) were major compounds in varieties. Total anthocyanins were found the highest level in 'Elizabeth' (1,406.3 mg/100 g dry weight) which was 3-fold higher than 'Darrow' (465.7). Especially, D3Ga was presented the 32% of total anthocyanins followed by Pn3G + M3Ga (20%) in 'Elizabeth'.CONCLUSION: This result was showed as valuable information regarding nutritional properties of the different varieties of the highbush blueberry.

Interactions between Chicken Salt-soluble Meat Proteins and Makgeolli Lees Fiber in Heat-induced Gels

  • Choi, Yun-Sang;Park, Kwoan-Sik;Kim, Hack-Youn;Kim, Hyun-Wook;Song, Dong-Heon;Chung, Hai-Jung;Lee, Ju-Woon;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.817-826
    • /
    • 2011
  • The technological effects of Makgeolli lees fiber (0, 0.5, 1.0, 2.0, and 4.0%) on chicken salt-soluble breast meat proteins in a model system on proximate composition, physicochemical properties, and textural properties were investigated. Makgeolli lees fiber was obtained from Makgeolli brew processing, and the by-products showed good dietary fiber. The moisture and ash contents, water holding capacity, redness, yellowness, hardness, and apparent viscosity of chicken salt-soluble meat protein heat-induced gel systems with Makgeolli lees fiber were all higher than the control without Makgeolli lees fiber. However, protein solubility and electrophoretic patterns did not differ among the control and treatments with Makgeolli lees fiber samples. The chicken salt-soluble protein heat-induced gel systems incorporating Makgeolli lees fiber had improved water holding capacity, textural properties, and viscosity due to Makgeolli lees fiber addition. These results suggest that the addition of 4.0% Makgeolli lees fiber to gel is helpful to improve the physical properties of heat-induced gels.

Effect of Allium hookeri Root on Physicochemical, Lipid, and Protein Oxidation of Longissimus Dorsi Muscle Meatball

  • Yoon, Dong-kyu;Kim, Ji-Han;Cho, Won-Young;Ji, Da-Som;Lee, Ha-Jung;Kim, Jung-Ho;Lee, Chi-Ho
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1203-1215
    • /
    • 2018
  • The antioxidant effects of Allium hookeri root (AHR) were investigated by evaluating lipid and protein oxidation in meatballs during refrigerated storage at $4{\pm}1^{\circ}C$. AHR was mixed at concentrations of 0.5% (w/w, T2) and 1% (w/w, T3) with minced longissimus dorsi muscle. Meatballs containing AHR (T2 and T3) were compared to those containing 0.05% (w/w) ascorbic acid (T1) as a reference and without antioxidant as a control. The 2-thiobarbituric acid reactive substances (TBARS) value, disulfide bond formation, carbonyl contents, and volatile basic nitrogen (VBN) value of T2 were lower than those of the control during storage (p<0.05). The pH values of T2 and T3 were higher than that of the control (p<0.05). Texture profile analysis of T2 revealed a lower value compared to the control (p<0.05). Therefore, the VBN value, TBARS value, disulfide bond formation, and carbonyl content in meatball containing AHR were lower than those of the control meatball. These results indicate that AHR improves the quality of meat products and functions as an antioxidant.

Oxidative Stability and Quality Characteristics of Duck, Chicken, Swine and Bovine Skin Fats Extracted by Pressurized Hot Water Extraction

  • Shin, Dong-Min;Kim, Do Hyun;Yune, Jong Hyeok;Kwon, Hyuk Cheol;Kim, Hyo Juong;Seo, Han Geuk;Han, Sung Gu
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.446-458
    • /
    • 2019
  • The aim of this study was to investigate the oxidative status and quality characteristics of four animal skin-derived fats extracted using an identical extraction method. Pressurized hot water extraction, a green extraction method, was used to extract animal skin fats (duck, chicken, swine, and bovine skin). Multiple experiments were performed during accelerated storage at $60^{\circ}C$ for 90 days. Quality characteristics, such as extraction yield, iodine value (IV), fatty acid composition, and fat viscosity were determined. In addition, indicators for oxidative status, including acid value (AV), peroxide value (PV), p-anisidine value (p-AV), thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD), and total oxidation (totox) values were evaluated. The fat extraction yield was highest in bovine fat, followed by duck, swine, and chicken fats. The IV was higher in duck and chicken fats. Duck fats contained the most unsaturated fats and the least saturated fats. Fat oxidation indicators, such as PV, TBARS, and totox values, were relatively higher in duck fats during storage compared to the other fats. Other indicators, including AV, p-AV, and CD, were similar in duck, chicken, and swine fats. Viscosity was similar in all the tested fats but markedly increased after 70 days of storage in duck fats. Our data indicate that duck skin fat was more vulnerable to oxidative changes in accelerated storage conditions and this may be due to its higher unsaturated fatty acid content. Supplementation with antioxidants might be a reasonable way to solve the oxidation issue in duck skin fats.

Effects of Various Extraction Methods on Quality Characteristics of Duck Feet Gelatin

  • Park, Jae-Hyun;Choe, Ju-Hui;Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Yeo, Eui-Joo;Kim, Hack-Youn;Choi, Yun-Sang;Lee, Sang-Hoon;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.162-169
    • /
    • 2013
  • We determined the optimum pretreatment conditions such as pH and time for swelling duck feet and investigated the effects of the extracting method, such as water bath (WB), pressure cooker (PC), and microwave oven (MO), on quality characteristics of the duck feet gelatin for improving utilization of duck feet as a novel source of gelatin. The soaking solution of pH 1 among pH 1-14 with unit intervals was selected due to the highest yield. The quality characteristics of the gelatin tested were color, pH, gel strength, viscosity, and melting point. For the extracted gelatin with different methods, the CIE $L^*$, $a^*$ and $b^*$ values were in the following order: MO>PC>WB (p<0.05), WB>PC>MO (p<0.05) and PC>MO>WB (p<0.05), respectively. The gelatin extracted using WB showed the highest pH and that extracted using MO showed the lowest pH (p<0.05). The gel strength, viscosity, and melting point were the highest for MO (p<0.05). The gel strength and melting point were the lowest for PC (p<0.05). No significant difference was found in viscosity between the gelatins extracted using WB and PC (p>0.05). The quality characteristic of duck feet gelatin was affected by extracting methods, and MO extraction can be one of the effective methods for duck feet gelatin.

Effects of Dietary Fiber Extracts from Brewer's Spent Grain on Quality Characteristics of Chicken Patties Cooked in Convective Oven

  • Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Lee, Soo-Yeon;Choi, Min-Sung;Lim, Yun-Bin;Choi, Ji-Hun;Choi, Yun-Sang;Kim, Hack-Youn;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • Brewer's spent grain (BSG) is a by-product of beer manufacturing. This study was conducted to evaluate the effect of dietary fiber extracts from brewer's spent grain on quality characteristics of chicken patties. The total fiber content of BSG dietary fiber extracts after extraction increased from 58.11% to 68.57%, and the extracted dietary fiber extracts were added to chicken patties at 0, 1, 2, 3, and 4%, respectively. The effects of the BSG dietary fiber extracts on pH, color, cooking loss, reduction in patty diameter, salt-soluble protein solubility, texture, and sensory characteristics of chicken patties were evaluated. The addition of BSG dietary fiber extracts decreased pH and lightness values, and increased redness and yellowness. Chicken patties formulated with 3-4% BSG dietary fiber extracts had the lowest cooking loss among all treatments (p<0.05). The diameter of chicken patties was not affected by the addition of BSG dietary fiber extracts. Additionally, no significant difference was observed in salt-soluble protein solubility after adding 3% BSG dietary fiber extracts compared to that in the control. Textural and sensory properties were different among the chicken patties, and the 3% BSG dietary fiber-added chicken patty had the highest acceptability. Our results indicate that 3% BSG dietary fiber extract can be used as a good source of dietary fiber for improving the quality characteristics of chicken patties.

Lotus (Nelumbo nucifera) Rhizome as an Antioxidant Dietary Fiber in Cooked Sausage: Effects on Physicochemical and Sensory Characteristics

  • Ham, Youn-Kyung;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Shin, Dong-Jin;Kim, Kyung-Il;Lee, Hye-Jin;Kim, Na-Rae;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.219-227
    • /
    • 2017
  • The objective of this study was to determine the physicochemical and sensory properties of cooked emulsion sausages containing different levels of lotus rhizome powder (0, 1, 2, and 3%, based on total weight). Lotus rhizome powder had no significant (p>0.05) impact on pH, moisture, protein, or ash content of sausage. However, fat content was slightly but significantly (p<0.05) decreased when the level of lotus rhizome powder was increased in the sausages. The addition of lotus rhizome powder to sausages at over 1% resulted in significantly (p<0.05) darker and less red color of cooked sausage compared to control. Increase in lotus rhizome level slightly improved the emulsion stability and apparent viscosity. Significant (p<0.05) reduction in cooking loss was observed when more than 1% of lotus rhizome powder was added to sausages. The textural properties of sausages were unaffected by the inclusion of lotus rhizome except for springiness and chewiness. On the manufacture day, control sausage had significantly (p<0.05) higher TBARS value than treatments. Regarding sensory characteristics, increased levels of lotus rhizome powder decreased (p<0.05) color and juiciness scores. However, cooked sausages exhibited similar overall acceptability regardless of the level of lotus rhizome powder added to sausages. Therefore, lotus rhizome powder, an antioxidant dietary fiber, could be used as an effective natural ingredient in meat products for the development of healthier and functional food.

3D Printing of Materials and Printing Parameters with Animal Resources: A Review

  • Eun Young Jeon;Yuri Kim;Hyun-Jung Yun;Bum-Keun Kim;Yun-Sang Choi
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.225-238
    • /
    • 2024
  • 3D printing technology enables the production of creative and personalized food products that meet consumer needs, such as an attractive visual appearance, fortification of specific nutrients, and modified textures. To popularize and diversify 3D-printed foods, an evaluation of the printing feasibility of various food pastes, including materials that cannot be printed natively, is necessary. Most animal resources, such as meat, milk, and eggs, are not inherently printable; therefore, the rheological properties governing printability should be improved through pre-/post-processing or adding appropriate additives. This review provides the latest progress in extrusion-based 3D printing of animal resource-based inks. In addition, this review discusses the effects of ink composition, printing conditions, and post-processing on the printing performance and characteristics of printed constructs. Further research is required to enhance the sensory quality and nutritional and textural properties of animal resource-based printed foods.

Nondestructive sensing technologies for food safety

  • Kim, M.S.;Chao, K.;Chan, D.E.;Jun, W.;Lee, K.;Kang, S.;Yang, C.C.;Lefcourt, A.M.
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.119-126
    • /
    • 2009
  • In recent years, research at the Environmental Microbial and Food Safety Laboratory (EMFSL), Agricultural Research Service (ARS) has focused on the development of novel image-based sensing technologies to address agro-food safety concerns, and transformation of these novel technologies into practical instrumentation for industrial implementations. The line-scan-based hyperspectral imaging techniques have often served as a research tool to develop rapid multispectral methods based on only a few spectral bands for rapid online applications. We developed a newer line-scan hyperspectral imaging platform for high-speed inspection on high-throughput processing lines, capable of simultaneous multiple inspection algorithms for different agro-food safety problems such as poultry carcass inspection for wholesomeness and apple inspection for fecal contamination and defect detection. In addition, portable imaging devices were developed for in situ identification of contamination sites and for use by agrofood producer and processor operations for cleaning and sanitation inspection of food processing surfaces. The aim of this presentation is to illustrate recent advances in the above agro.food safety sensing technologies.

  • PDF

Application of Response Surface Methodology for Optimization of Applemango Jelly Processing (애플망고 젤리의 제조 최적화를 위한 반응표면분석법의 적용)

  • Hyeonbin, Oh;Hyun-Jeong, Shim;Chae-wan, Baek;Hyun-Wook, Jang;Young, Hwang;Yong Sik, Cho
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.6
    • /
    • pp.473-480
    • /
    • 2022
  • This study aimed to develop an optimal processing method for the production of apple-mango jelly for domestic suppliers, by analyzing the quality attributes of the jelly. According to the central composite design, a total of 11 experimental points were designed including the content of apple-mango juice (X1), and the sugar content (X2). The responses were analyzed including the color values (CIE Lab and color difference), physicochemical properties (water activity, sweetness, pH, and total acidity), and textural properties (hardness and gel strength). Regression analysis was conducted, except for total acidity, and showed no significant difference for all the experimental points (p<0.05). Quadratic model was derived for all responses with an R square value ranging from 0.8590 to 0.9978. Based on regression model, the appropriate mixing ratio of apple-mango jelly was found to be 31.11% of apple mango juice and 14.65% of sugar. Through this study, the possibility for developing jelly product using apple-mango was confirmed, and it is expected that these findings will contribute to the improvement of the agricultural industry.