• Title/Summary/Keyword: food packaging technology

Search Result 615, Processing Time 0.025 seconds

Development of Degassing Valves for Food Packaging using Ring Type Rubber Disk (링타입 고무막을 이용한 식품 포장용 가스배출 밸브(Degassing Valve) 개발)

  • Yu, Ha Kyoung;Lee, Kyungo Ho;Oh, Jae Young
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.2
    • /
    • pp.35-39
    • /
    • 2014
  • One-way degassing valves are designed to allow pressure to be released from an air-tight package while preventing air from getting back into the package. Air, especially the oxygen ($O_2$) portion of air, can have negative effects on the package contents and its freshness. The most common application of the one-way degassing valve is for fresh roasted coffee. Demands of one-way degassing valves have been increasing with the high growth of global coffee market. In this study, we have developed one-way degassing valves for coffee and food packaging using ring type rubber disk, named SP valve. Its quality and performance was verified with test results to be equal with that of global top maker's product, Goglio valve. SP valves showed 820~1200 Pa of opening pressure, 10~50 Pa of closing pressure, 1.2~1.6 L/ min of flow rate. And, the SP valve applicable to ferment food packaging is expected to contribute to globalize Korean traditional food.

  • PDF

Analysis of the Causes of Deformation of Packaging Materials Used for Ready-to-Eat Foods after Microwave Heating (즉석편의 식품용 포장재의 전자레인지 가열에 의한 변형 원인 분석)

  • Yoon, Chan Suk;Hong, Seung In;Cho, Ah Reum;Lee, Hwa Shin;Park, Hyun Woo;Lee, Keun Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • The aim of this study was to investigate the deformation of packaging materials used for ready-to-eat (RTE) foods after the retort process and microwave heating. From the multilayer films consisting of polyethylene terephthalate (PET), polyamide (PA), and cast polypropylene (CPP) in a stand-up pouch form used for RTE foods, some deformation of the CPP layer, which was in direct contact with the food, was observed after the retort process and microwave heating. The damage was more severely caused by microwave heating than by the retort process. This may be attributed to diverse factors including the non-uniform heating in a microwave oven, the sorption of oil into the packaging film, and the different characteristics of food components such as viscosity, salt and water content. The development of heat-resistant packaging materials and systems suitable for microwave heating of RTE foods is required for the safety of consumers.

Quality Changes of Fresh-Cut Potatoes during Storage Depending on the Packaging Treatments (신선한 감자절편의 포장방법에 따른 저장 중 품질변화)

  • Lim, Jeong-Ho;Choi, Jeong-Hee;Hong, Seok-In;Jeong, Moon-Cheol;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.933-938
    • /
    • 2005
  • To investigate pertinent packaging treatment of fresh-cut potatoes (Solanum tuberosum L.), potato cubes were subjected to passive, gas exchange, and vacuum packaging conditions. Low density polyethylene film (LDPE), polypropylene film (PP), anti-fogging film (AP), and perforated film (PF) were used as passive packaging treatments. Mixed gases of 5% $CO_2/5%\;O_2$ (MA1) and 10% $CO_2/5%\;O_2$ (MA2) were applied as gas exchange packaging. Packs filled with cubes were kept at $5^{\circ}C$, and changes in weight loss, surface color, vitamin C content and sensory quality of cubes were analyzed during storage. Respiration rate of cubes was 2.11 times higher than that of intact raw potatoes at $5^{\circ}C$. Gas concentrations in passive packaging was maintained at 1-2% $O_2$ and 4-14% $CO_2$ after 7 days. Gas levels changed depending on films used. Cubes packed in PP and MA2 showed lowest weight loss and browning during storage. Firmness of cubes was not affected by packaging treatment. Vitamin C content was highest in cubes packed with AF. Cubes packed in MA2 showed highest quality upto 10days storage, followed by those packed in PP and AF.

Effect of Packaging Method on the Quality of Strawberry, Tomato, and plum during Storage

  • Lee, Se-Hee;Lee, Myung-Suk;Lee, Yong-Woo;Sun, Nam-Kyu;Song, Kyung-Bin
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.187-187
    • /
    • 2003
  • To examine the effect of packaging method on strawberry, tomato, and plum quality, the rate of weight loss, Hunter a value, decay rate, anthocyanin contents, and microbial (total bacterial counts, mold and yeast, and pseudomonas) changes were determined during storage. Strawberry was packaged with low density polyethylene (LDPE). Tomato and plum were packaged with high density polyethylene film (HDPE). Strawberries, tomatoes, and plums were then stored at 4$^{\circ}C$ and 20$^{\circ}C$, respectively. LDPE package was the most effective on the decrease of decay rate of strawberry and the rate of weight loss for packaged strawberry was lower than that of the non-packaged. HDPE package was the most effective on the rate of weight loss during storage of tomatoes and plums regardless of storage temperature. Hunter a value increased during storage. Anthocyanin contents of plums increased overall with increasing storage time, and plums stored without package were changed more than those with package. Microbial changes of strawberry, tomato, and plum stored at 4$^{\circ}C$ and 20$^{\circ}C$ were monitored during storage. Packaging method did not affect the microbial change, yet temperature did affect the microbial change significantly. These results indicate that storage of these commodities at 4$^{\circ}C$ should be recommended in terms ,of microbial safety as well as quality and shelf-life.

  • PDF

Modified Atmosphere Packaging of Fresh-cut Onion (최소가공 절단 양파의 MA 포장)

  • Kim, Eun-Mi;Kim, Nam-Yong;An, Duck-Soon;Shin, Yong-Jae;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.17 no.2
    • /
    • pp.39-42
    • /
    • 2011
  • The aim of this study was to develop the appropriate packaging method for minimally processed sliced onions. The films of different gas permeabilities (LDPE $30{\mu}m$, PD900 and PD941) were used for packaging 1300g of onion slices cut into octuplicate pieces. Perforated LDPE package was prepared as control for comparison. The package atmosphere and onion quality were measured through storage at $1^{\circ}C$ for 38 days. PD900 package of the lowest gas permeability was the best in keeping the fresh-cut onions by maintaining MA conditions of 1-3% $O_2$ and 4-11% $CO_2$ concentrations. The benefits were reduced discoloration, decay and soakness.

  • PDF

Effect of Packaging and Electron Beam Irradiation on the Microbial Safety and Quality of Dried Undaria pinnatifida (전자선 조사가 포장방법에 따른 건미역(Undaria pinnatifida)의 미생물학적 안전성 및 품질변화에 미치는 영향)

  • Bark, Si-Woo;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Kang, Bo-Kyeong;Pak, Won-Min;Kim, Bo-Ram;Ahn, Na-Kyung;Choi, Yeon Uk;Lee, Ju-Woon;Kim, Jae-Hun;Byun, Myoung-Woo;Ahn, Dong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.489-494
    • /
    • 2014
  • This study determined the effect of packaging and electron beam irradiation on the quality of dried Undaria pinnatifida. Samples were air or vacuum packaged and irradiated at 7 kGy. The dried Undaria pinnatifida had total viable cells and coliform counts of 5.51 and 4.40 log CFU/g in total, respectively, and counts of 5.56 and 4.19 log CFU/g in surface. These counts were reduced by 2-4 log cycles after irradiation. Irradiation increased the lightness and yellowness of the dried Undaria pinnatifida, but not the redness. In the sensory evaluation, there were no significant differences among samples. Therefore, electron beam irradiation improves the microbial safety and quality of dried Undaria pinnatifida.

Effects of Concentration of ZnO Nanoparticles on Mechanical, Optical, Thermal, and Antimicrobial Properties of Gelatin/ZnO Nanocomposite Films

  • Shankar, Shiv;Teng, Xinnan;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.2
    • /
    • pp.41-49
    • /
    • 2014
  • This study illustrates the synthesis of gelatin based zinc oxide nanoparticle (ZnONPs) incorporated nanocomposite films using different concentrations of ZnONPs. The ZnONPs were oval in shape and the size ranged from 100- 200 nm. The nanocomposite films were characterized by UV-visible, FE-SEM, FT-IR, and XRD. The concentrations of ZnONPs greatly influenced the properties of nanocomposite films. The absorption peaks around 360 nm increased with the increasing concentrations of ZnONPs. The surface color of film did not change while transmittance at 280 nm was greatly reduced with increase in the concentration of ZnONPs. FTIR spectra showed the interaction of ZnONPs with gelatin. XRD data demonstrated the crystalline nature of ZnONPs. The thermostability, char content, water contact angle, water vapor permeability, moisture content, and elongation at break of nanocomposite films increased, whereas, tensile strength and modulus decreased with increase in the concentrations of ZnONPs. The gelatin/ZnONPs nanocomposite films showed profound antibacterial activity against both Gram-positive and Gram-negative food-borne pathogenic bacteria. The gelatin/$ZnONP^{1.5}$ nanocomposite film showed the best UV barrier and antimicrobial properties among the tested-films, which indicated a high potential for use as an active food packaging films with environmentally-friendly nature.

  • PDF