• Title/Summary/Keyword: foliation stage

Search Result 17, Processing Time 0.029 seconds

Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer

  • Kim, Yu-Jin;Jeon, Ji-Na;Jang, Moon-Gi;Oh, Ji Yeon;Kwon, Woo-Saeng;Jung, Seok-Kyu;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Panax ginseng is one of the most important medicinal plants in Asia. Triterpene saponins, known as ginsenosides, are the major pharmacological compounds in P. ginseng. The present study was conducted to evaluate the changes in ginsenoside composition according to the foliation stage of P. ginseng cultured in a hydroponic system. Among the three tested growth stages (closed, intermediate, and opened), the highest amount of total ginsenoside in the main and fine roots was in the intermediate stage. In the leaves, the highest amount of total ginsenoside was in the opened stage. The total ginsenoside content of the ginseng leaf was markedly increased in the transition from the closed to intermediate stage, and increased more slowly from the intermediate to opened leaf stage, suggesting active biosynthesis of ginsenosides in the leaf. Conversely, the total ginsenoside content of the main and fine roots decreased from the intermediate to opened leaf stage. This suggests movement of ginsenosides during foliation from the root to the leaf, or vice versa. The difference in the composition of ginsenosides between the leaf and root in each stage of foliation suggests that the ginsenoside profile is affected by foliation stage, and this profile differs in each organ of the plant. These results suggest that protopanaxadiol- and protopanaxatriol(PPT)-type ginsenosides are produced according to growth stage to meet different needs in the growth and defense of ginseng. The higher content of PPT-type ginsenosides in leaves could be related to the positive correlation between light and PPT-type ginsenosides.

Magnetic Anisotropy and Tectonic Stress Field of Tertiary Rocks in Pohang-Ulsan area, Korea (포항이남 제3기분지암석의 자기 비등방성과 지구조적 응력장)

  • Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 1990
  • Magnetic anisotropy of a total of 213 independently oriented Tertiary rock samples from Pohang-Ulsan area has been studied. The sampled strata comprise basalts, tuffs and black shale, and range in age from Eocene to Miocene. The previous palaeomagnetic studies indicate that their magnetic carrier minerals are titanomagnetites. Among 23 sampled sites, 11 sites were found to preserve magnetic load foliation parallel to the bedding plane caused by the Iithostatic load of the overlying strata. Other 4 sites showed magnetic lineation indicating the flow direction of lava and tuffs. The remaining 8 sites revealed the magnetic tectonic foliation nearly vertical to the bedding plane. This magnetic foliation is interpreted to be generated by tectonic compression which acted nearly horizontally during the solidification stage of the strata. The compression directions deduced from the tectonic foliation of the 8 sites can be grouped into internally very consistent two group: a N-S trending one and the other WNW-ESE trending one. It is interpreted that the former N-S compression was associated with the N-S spreading of the East Sea(Sea of Japan) and the dextral strike-slip movement of the Yangsan-Ulsan fault system. The latter WNW-ESE compression is interpreted to represent the folding and reverse faulting activity in the Korean and Tsushima straits during middle/late Miocene times.

  • PDF

Changes of Saponin Contents of Leaves, Stems and Flower-buds of Panax ginseng C. A. Meyer by Harvesting Days (인삼 지상부의 채취시기에 따른 사포닌조성 비교)

  • Choi, Jae-Eul;Li, Xiangguo;Han, Young-Hwan;Lee, Ki-Teak
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.4
    • /
    • pp.251-256
    • /
    • 2009
  • The parts of leaves, flowers and stems in ginseng were obtained for analyzing the component of saponin on 15th April, 25th April, 5th May, 25th May, which were considered as ginseng foliation stage. The total saponin content of the leaves were 97.29, 66.42, 67.61, 36.24 mg/g, respectively, in which the content of Re, $Rb_1$ and Rd were more than 2/3 amount of total saponin. Especially, the saponin content of leaves decreased according to the sequential collection days, in which the similar results were observed from the flowers and stems of ginseng. The total saponin content of the flowers and stems were 141.09,143.84,139.25,133.47 and 13.32, 9.85, 8.00, 4.65 mg/g, respectively. Among them, the content of Re, Rd and $Rb_2$ in flowers were more than 2/3 while the content of Re, $Rg_1$ and Rd in stems showed more than 9/10 amount of total saponin. The total saponin content of individual leaf were 19.46, 28.56, 58.82 and 169.24 mg/plant, 2.53, 2.76, 5.20 and 12.32 mg/plant in stems, and 14.11, 30.21, 37.60 and 73.41 mg/plant in flowers. Therefore, the total saponin content of aboveground parts in ginseng were leaves > flowers > stems.

The Widening of Fault Gouge Zone: An Example from Yangbuk-myeon, Gyeongju city, Korea (단층비지대의 성장: 경주시 양북면 부근의 사례)

  • Chang, Tae-Woo;Jang, Yun-Deuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • A fault gouge zone which is about 25cm thick crops out along a small valley in Yangbuk-myeon, Gyeongju city. It is divided into greenish brown gouge and bluish gray gouge by color. Under the microscope, the gouges have a lot of porphyroclasts composed of old gouge fragments, quartz, feldspar and iron minerals. Clay minerals are abundant in matrix, defining strikingly P foliation by preferred orientation. Microstructural differences between bluish pay gouge and greenish brown gouge are as follows: greenish brown gouge compared to bluish gray gouge is (1) rich in clay minerals, (2) small in size and number of porphyroclasts, and (3) plentiful in iron minerals which are mostly hematites, while chiefly pyrites in bluish gray gouge. Hematites are considered to be altered from pyrites in the early-formed greenish brown gouge under the influence of hydrothermal fluids accompanied during the formation of bluish gray gouge that also precipitated pyrites. It is believed that the fault core including bluish gray gouge zone and greenish brown gouge zone was formed by progressive cataclastic flow. In the first stage the fault core initiates from damage zone of early faulting. In the second stage damage zone actively transforms into breccia zone by repeated fracturing. The third stage includes greenish brown (old) gouge formation in the center of the fault core mainly by particle grinding. In the third stage further deformation leads to the formation of new (bluish gray) gouge zone while old gouge zone undergoes strain hardening. Consequently, the whole gouge zone in the core widens.

Ductile Shear Deformation around Jirisan Area, Korea (지리산 일대의 연성전단변형)

  • Ryoo, Chung-Ryul;Kang, Hee-Cheol;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.53-69
    • /
    • 2019
  • In the Jirisan area of the Yeongnam Massif, Korea, several ductile shear zones are developed within Precambrian gneiss complex (Jirisan metamorphic rock complex). The ductile shear zones have a general NS- and NNE-striking foliation with westward dipping directions. The foliation developed in the shear zones cut the foliation in gneiss complex. The stretching lineations are well developed in the foliated plane of the shear zone, showing ENE-trend with gentle plunging angle to the ESE direction. Within shear zone, several millimetric to centimetric size of porphyroclasts are deformed strongly as a sigmoid form by ductile shearing. The sigmoid patterns of porphyroclasts in the shear zones indicate the dextral shearing. The spatial distribution of ductile shear zone is characterized by the dominant NS- and NNE-striking dextral sense in the central and eastern regions respectively. In the western part, it develops in NE-striking dextral sense which is the general direction of the Honam shear zone. The U-Pb concordant ages obtained from the two samples, the strongly sheared leucocratic gneiss, are $1,868{\pm}3.8Ma$ and $1,867{\pm}4.0Ma$, respectively, which are consistent with the U-Pb ages reported around the study area. We supposed that the ductile shearing in the study area is occurred about 230~220 Ma during late stage of the continental collision around Korea and is preceded by granitic intrusion related to subduction during 260~230 Ma, which are supported by compiling the age data from sheared gneiss, deformed mafic dyke intruded gneiss complex, and non-deformed igneous rocks.

Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea (산청 회장암복합체의 형성과정과 그 메커니즘)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.431-449
    • /
    • 2015
  • The study area is located in the western part of the Precambrian stock type of Sancheong anorthosite complex, the Jirisan province of the Yeongnam massif, in the southern part of the Korean Peninsula. We perform a detailed field geological investigation on the Sancheong anorthosite complex, and report the characteristics of lithofacies, occurrences, foliations, and research formation process and its mechanism of the Sancheong anorthosite complex. The Sancheong anorthosite complex is classified into massive and foliation types of Sancheong anorthosite (SA), Fe-Ti ore body (FTO), and mafic granulite (MG). Foliations are developed in the Sancheong anorthosite complex except the massif type of SA. The foliation type of SA, FTO, MG foliations are magmatic foliations which were formed in a not fully congealed state of SA from a result of the flow of FTO and MG melts and the kinematic interaction of SA blocks, and were continuously produced in the comagmatic differentiation. The Sancheong anorthosite complex is formed as the following sequence: the massive type of SA (a primary fractional crystallization of parental magmas under high pressure)${\rightarrow}$ the foliation type of SA [a secondary fractional crystallization of the plagioclase-rich crystal mushes (anorthositic magmas) primarily differentiated from parental magmas under low pressure]${\rightarrow}$the FTO (an injection by filter pressing of the residual mafic magmas in the last differentiation stage of anorthositic magmas into the not fully congealed SA)${\rightarrow}$the MG (a solidification of the finally residual mafic magmas). It indicates that the massive and foliation types of SA, the FTO, and the MG were not formed from the intrusion and differentiation of magmas which were different from each other in genesis and age but from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma.

A Comparative Analysis between 3D Geological Modeling and Magnetic Data of Fe-Mn Ore in Ugii Nuur, Mongolia (몽골 우기누르 철-망간 부존 지역의 3차원 지질모델과 자력탐사 결과의 비교분석)

  • Lee, Jeong-a;Yu, Jaehyung;Park, Gyesoon;Lee, Bum han;Kim, In-Joon;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.313-324
    • /
    • 2015
  • This study constructed a 3D geological model for Uggi Nuur Fe-Mn mineralization zone in Mongolia, and the 3D geological distribution is cross-analyzed with magnetic anomaly distribution to figure out relationship between ore zone and subsurface geology. As a result of 4 step 3D modeling procedures including geological cross section, surface modeling, foliation modeling and solid modeling, the geology of the both study area is bordered by faults in NW direction with Munguntessj formation being located in the west side of the fault while Yashill formation is located on the other side of the fault. Moreover, the strike direction of foliation in the both formation shows same directional pattern with the NW faults. The magnetic anomaly distribution reveals that higher anomaly values are concentrated to near the ground surface. The analyses of 3 dimensional distribution between subsurface geology and magnetic anomaly indicates that higher anomaly is mainly distributed over the Munguntessj formation as a elongated lens bodies whereas the magnetic anomaly is evenly found in the both of Munguntessj formation and Yashill formation in the study area 2. It infers that volcanic activities associated mineralization occurred during silurian period, and the mineralized zone is thought to be realigned along the geological structures caused by later stage tectonic activities.

Changes in Organic and Inorganic Nutrients in Terminal Shoots of 'Fuyu' Persimmon during Spring Growth (감나무 정단신초의 봄 생장 동안 유기 및 무기 양분의 변화)

  • Yoon, Young-Whang;Choi, Seong-Tae;Park, Doo-Sang;Rho, Chi-Woong;Kim, Dae-Ho;Kang, Seong-Mo
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • To understand changes in composition and distribution of nutrients during early shoot growth of persimmon, organic compounds and inorganic elements of terminal shoots were analyzed for about 40 days from the time of foliation. Sample shoots were collected from mature 'Fuyu' trees for this three-year experiment and they were divided to stem, leaves, and the fruits including flower buds at the earliest stage. During shoot growth, concentration of soluble sugars increased in both leaves and fruits, but that of starch increased only in leaves. Those of amino acids tended to decrease in all the parts but there was no consistent change in proteins. As shoots grew, contents of all the organic compounds in a shoot increased, and they were especially higher in May leaves accounting for more than 60% of the shoot total for each nutrient. Along with shoot growth, concentrations of N and P gradually decreased in all three parts, while K decreased only in stem. However, those of Ca and Mg did not show notable changes in all the parts with wide variations depending on the year. Due to the quantitative increase in growth, contents of inorganic elements in a shoot increased in all the parts and the leaves accounted for 54-82% of the shoot total. At the cessation time of extension growth, a shoot contained 526-768 mg of soluble sugars, 245-844 mg of starch, 26-31 mg of amino acids, and 66-103 mg of proteins for three years. On the other hand, a shoot contained 203-388 mg of K, the greatest among the inorganic elements, followed by 132-159 mg of N. Changes of the nutrients in a shoot were much greater during the earlier stage of growth after foliation than during the later stage toward growth cessation, suggesting the importance of mobilizing reserve nutrients for the early growth of the shoots. The results of this study also suggested that the rate of nutrient changes, especially during the earlier stage of shoot growth, could be affected by environmental and cultural conditions.

The Effect of Pyroligneous Acid on Leaf Tissue and Root Growth of Ginseng(Panax Ginseng C. A. Meyer) (목초액 처리가 인삼 잎 조직 및 지하부 생육에 미치는 영향)

  • Seong, Bong-Jae;Han, Seung-Ho;Kim, Sun-Ick;Kim, Hyun-Ho;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.97-100
    • /
    • 2014
  • To explore the possibility of using pyroligneous acid for environmentally friendly ginseng farming, this study observed samples of ginseng whose shoots were treated with pyroligneous acid sprays beginning in mid June, which is after foliation stage. The spongy tissue structure got thickened from triple layers to quadruple layers with the pyroligneous acid regardless of the concentration. The upper and lower epidermis cell of the leaves as well as the leaf mesopyll cells also became thicker. Compared to the no-treatment group, the overall growth and development of ginseng roots treated with pyroligneous acid were excellent. Accordingly, it is believed that pyroligneous acid can be an environmentally friendly alternative to conventional agro-chemicals applied to ginseng that can be used to facilitate the growth and development of ginseng.

Petrology of Charnockite in Sancheong Area (산청지역에 분포하는 챠노카이트의 암석학적 연구)

  • Lee, Sang-Won;Ock, Soo-Seck;Lee, Young-Taek
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The Charnockite in Sancheong region is quarzofeldspathic rock containing orthopyroxene and garnet with a color dark than common granitic rocks. The Chamockite are mostly massive and medium to coarse-grained with K-feldspar phenocryst, but reveal weak foliation. The rock consist mainly of quartz, K-feldspar, plagioclase and orhopyroxene, with biotite, garnet, and anthophyllite. In petrochemistry, the Chamockite has 61-65% $SiO_2$ contents, varying gradually into the margin contacted with orthogneiss, which have compositions of felsic igneous rocks. Major element show almost systematical variation with those of the marginal orthogneisses, except the hornblende gneiss and anorthosite. The Charnockite and orthogneisses show the tholeiitic differentiational trend. Trace and rare earth element abundance patterns in the Charnockite show remarkable negative Sr and Eu anomalies similar to orthogneisses, but different from the hornblende gneiss and anorthosite. Eu contents of the Charnockite are richer than that of orthogneisses. The metamorphic condition of the Charnockite were tested by an orthopyroxene-garnet geotherrnorneter and a plagioclase-garnet geobarometer. Estimated P-T conditions are about $761^{\circ}C$ and 7 kbar at peak metamorphism, but $653^{\circ}C$ and 6.4 kbar at retrograde metamorphism. This suggests that the Charnockite have from an early stage of high-grade metamorphism to represent the granulite facies and then to a late stage medium-grade metamorphism belonging to the amphibolite facies.