• Title/Summary/Keyword: folded paper structure

Search Result 81, Processing Time 0.021 seconds

Message Routing Method for Inter-Processor Communication of the ATM Switching System (ATM 교환기의 프로세서간통신을 위한 메시지 라우팅 방법)

  • Park, Hea-Sook;Moon, Sung-Jin;Park, Man-Sik;Song, Kwang-Suk;Lee, Hyeong-Ho
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.289-440
    • /
    • 1998
  • This paper describes an interconnection network structure which transports information among processors through a high speed ATM switch. To efficiently use the high speed ATM switch for the message-based multiprocessor, we implemented the cell router that performs multiplexing and demultiplexing of cells from/to processors. In this system, we use the expanded internal cell format including 3bytes for switch routing information. This interconnection network has 3 stage routing strategies: ATM switch routing using switch routing information, cell router routing using a virtual path identifier (VPI) and cell reassembly routing using a virtual channel indentifier (VCI). The interconnection network consists of the NxN folded switch and N cell routers with the M processor interface. Therefore, the maximum number of NxM processors can be interconnected for message communication. This interconnection network using the ATM switch makes a significant improvement in terms of message passing latency and scalability. Additionally, we evaluated the transmission overhead in this interconnection network using ATM switch.

  • PDF

Folding Analysis of Paper Structure and Estimation of Optimal Collision Conditions for Reversal (종이구조물의 접기해석과 반전을 위한 최적충돌조건의 산정)

  • Gye-Hee Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.213-220
    • /
    • 2023
  • This paper presents a model simulating the folding process and collision dynamics of "ddakji", a traditional Korean game played using paper tiles (which are also referred to as ddakji). The model uses two A4 sheets as the base materials for ddakji. The folding process involves a series of boundary conditions that transform the wing part of the paper structure into a twisted configuration. A rigid plate boundary condition is also adopted for squeezing, establishing the shape and stress state of the game-ready ddakji through dynamic relaxation analysis. The gaming process analysis involves a forced displacement of the striking ddakji to a predetermined collision position. Collision analysis then follows at a given speed, with the objective of overturning the struck ddakji--a winning condition. A genetic algorithm-based optimization analysis identifies the optimal collision conditions that result in the overturning of the struck ddakji. For efficiency, the collision analysis is divided into two stages, with the second stage carried out only if the first stage predicts a possible overturn. The fitness function for the genetic algorithm during the first stage is the direction cosine of the struck ddakji, whereas in the second stage, it is the inverse of the speed, thus targeting the lowest overall collision speed. Consequently, this analysis provides optimal collision conditions for various compression thicknesses.

Design of Dual LTE-band MIMO Antenna (이중 LTE 대역의 MIMO 안테나 설계)

  • Choi, Won-Sang;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • In the paper, MIMO antenna for LTE 13 band, LTE 7 band wireless communication service is proposed. The proposed antenna is designed where on the top of FR-4(${\epsilon}_r=4.4$, thickness=-.8mm). In proposed structure, two Planar Inverted F Antennas (PIFAs) using meander and folded structure are symmetrically designed for the miniaturization. The isolation between two antennas was also improved by using two slits on the ground plane. The isolation values of the fabricated antenna exhibits -18 dB, -13dB at LTE 13 and LTE 7 band, respectively. The average gain and efficiency are - 4.1 dBi, 41% on LTE 13 band, -1 dBi, 81% on LTE 7 band, respectively. Thus the proposed antenna can be applied to the LTE system.

A Compact CPW-fed Antenna with Step Structure for 5 GHz Band WLAN Applications (계단구조를 갖는 5 GHz 대역 무선랜용 소형 CPW 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • In this paper, a compact CPW-fed antenna for 5 GHz (5.15-5.35 GHz, 5.725-5.825 GHz) band WLAN applications is presented. The designed antenna's shape is step structure. The antenna is fabricated and measured into FR-4 substrate of dielectric comstant 4.2 and thickness 1.0 mm with optimized parameters obtained by simulation. We confirm that it is operated as antenna for WLAN applications by obtaining the measured return loss level of < -10 dB in 5.133-5.982 GHz. The dimensions of the antenna ($20.0{\times}16.0{\times}1.0mm^3$) shows an compactness of about 67.17% with respect to a conventional folded slot antenna.

Multi-Band Antenna Using Folded Monopole Line and Log-Periodic Structure (폴디드 모노폴 선로가 부착된 대수주기 구조를 이용한 다중대역 안테나)

  • Lee, hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.142-146
    • /
    • 2014
  • In this paper, an antenna which has quad band in GSM/DCS/PCS/Bluetooth is proposed. This structure is designed with miniaturization for wide band characteristic based on monopole antenna and log-periodic toothed trapezoid patch antenna which has slots. To achieve multi-bandwidth is used the microstrip line on the substrate. An antenna size is $35mm{\times}20mm$ on FR-4(${\varepsilon}r=4.4$) ground substrate of $35mm{\times}75mm{\times}1mm$ size. And proposed antenna is satisfied with impedance bandwidth(VSWR ${\leq}$ 3). The simulated maximum radiation gain is 1.92 dBi, 3.26 dBi, 3.97 dBi at the center frequency of 0.92 GHz, 1.97 GHz, 2.45 GHz, respectively.

A Sutdy on the UWB Intenna with Band-Stop Function for Mobile Handsets (대역 저지 특성을 갖는 휴대 단말기용 초소형 UWB Intenna에 관한 연구)

  • Lim, Yo-Han;Yoon, Young-Joong;Ho, Yo-Chuol;Jung, Byung-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1445-1454
    • /
    • 2008
  • In this paper, small UWB antenna with band-stop function for mobile handsets is proposed. A gap between radiator and under and side ground is adjusted for small size and broadband. A radiator is folded to the back side of PCB for miniaturization and tapered feeding structure is used to enhance matching characteristic. A antenna clearance has a size of $14{\times}14\;mm^2$ and a size of radiator is $10{\times}7\;mm^2$. It covers all UWB band from 3.15 GHz to 4.75 GHz and from 7.2 GHz to 10.2 GHz for VSWR<2 and has band stop characteristic at 5.8 GHz. A maximum gain is measured as 5.85 GHz. In case conventional handset case is considered, it also covers all UWB and a maximum gain is measured from -2 dBi to -2 dBi.

Multibody Dynamic Model and Deployment Analysis of Mesh Antennas (메쉬 안테나의 전개 구조물 설계 및 다물체 동역학 해석)

  • Roh, Jin-Ho;Jung, Hwa-Young;Kang, Deok-Soo;Kang, Jeong-Min;Yun, Ji-Hyeon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.63-72
    • /
    • 2022
  • The purpose of this paper was to understand the dynamics of deployment of large mesh antennas, and to provide a numerical method for determining the dynamic stiffness and the driving forces for the design. The deployment structure was numerically modeled using the frame elements. The eigenvalue analysis was demonstrated, with respect to the folded and unfolded configurations of the antenna. A multibody dynamic model was formulated with Kane's equation, and simulated using the pseudo upper triangular decomposition (PUTD) method for resolving the constrained problem. Based on the multibody model, the kinetics of the deployment, the motor driving forces, and the feasibility of the designed deployment structure were investigated.

Design of Triangular-Patch Type Low Pass Filter (삼각패치형 저역 통과 여파기의 구현)

  • Oh, Song-Yi;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.355-360
    • /
    • 2012
  • In this paper, an stepped-impedance low pass filter(SI-LPF) of triangular-patch type is proposed. A SI-LPF designed according to the standard SI-LPF design procedure is folded as a right angled triangle. The figure of merits of this structure are the adjustabilities of the cut off frequency, the stopband and the attenuation pole frequency of the proposed LPF by varying the resultant slots after folding the SI-LPF compactly for miniaturization. The size of the fabricated LPF is $13.75mm{\times}6.875mm$, which is 24.4 % reduced one compared to that of the conventional SI-LPF. The measured results of the LPF show return loss of less than -10 dB at passband, insertion loss of less than -10 dB at stopband and wide stopband from 3.5 GHz to 10 GHz (about $3f_c$).

Buckling Analysis of Box-typed Structures using Adaptive Shell Finite Elements (적응적 쉘유한요소를 이용한 박스형 구조물의 좌굴해석)

  • Song, Myung-Kwan;Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.265-272
    • /
    • 2007
  • The finite element linear buckling analysis of folded plate structures using adaptive h-refinement methods is presented in this paper. The variable-node flat shell element used in this study possesses the drilling D.O.F. which, in addition to improvement of the element behavior, permits an easy connection to other elements with six degrees of freedom per node. The Box-typed structures can be analyzed using these developed flat shell elements. By introducing the variable-node elements some difficulties associated with connecting the different layer patterns, which are common in the adaptive h-refinement on quadrilateral mesh, can be overcome. To obtain better stress field for the error estimation, the super-convergent patch recovery is used. The convergent buckling modes and the critical loads associated with these modes can be obtained.

A Design of CPW Band-Pass Filter with Rejection Band for Ultra-Wideband System (저지 대역을 갖는 UWB용 CPW 대역 통과 여파기의 설계)

  • No, Jin-Won;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.704-709
    • /
    • 2007
  • In this paper, a CPW band-pass filter with a rejection band is proposed for UWB(Ultra-Wideband) communication systems. The proposed filter has a band-pass characteristic of wide-band by inserting only a slot in $50{\Omega}$ transmission line. To obtain the band-rejection function at WLAN frequency band($5.15{\sim}5.725GHz$), the designed filter is combined with folded slot resonators on the ground plane of the CPW structure. The fabricated CPW band-pass filter shows a compact size of $15.35{\times}13.60mm$, a wide passband of 2.8 GHz to 9.8 GHz and the narrow stop-band of 5.15 GHz to 5.71 GHz for 3-dB bandwidth. Also, the measured group delay is less than 400 psec throughout the operation frequency band except the rejection band.