• Title/Summary/Keyword: fog system

Search Result 240, Processing Time 0.036 seconds

Fireworks Modeling Technique based on Particle Tracking (입자추적기반의 불꽃 모델링 기법)

  • Cho, ChangWoo;Kim, KiHyun;Jeong, ChangSung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.102-109
    • /
    • 2014
  • A particle system is used for modeling the physical phenomenon. There are many traditional ways for simulation modeling which can be well suited for application including the landscapes of branches, clouds, waves, fog, rain, snow and fireworks in the three-dimensional space. In this paper, we present a new fireworks modeling technique for modeling 3D firework based on Firework Particle Tracking (FPT) using the particle system. Our method can track and recognize the launched and exploded particle of fireworks, and extracts relatively accurate 3D positions of the particles using 3D depth values. It can realize 3D simulation by using tracking information such as position, speed, color and life time of the firework particle. We exploit Region of Interest (ROI) for fast particle extraction and the prevention of false particle extraction caused by noise. Moreover, Kalman filter is used to enhance the robustness in launch step. We propose a new fireworks particle tracking method for the efficient tracking of particles by considering maximum moving range and moving direction of particles, and shall show that the 3D speeds of particles can be obtained by finding the rotation angles of fireworks. Also, we carry out the performance evaluation of particle tracking: tracking speed and accuracy for tracking, classification, rotation angle respectively with respect to four types of fireworks: sphere, circle, chrysanthemum and heart.

The Method for Colorizing SAR Images of Kompsat-5 Using Cycle GAN with Multi-scale Discriminators (다양한 크기의 식별자를 적용한 Cycle GAN을 이용한 다목적실용위성 5호 SAR 영상 색상 구현 방법)

  • Ku, Wonhoe;Chun, Daewon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1415-1425
    • /
    • 2018
  • Kompsat-5 is the first Earth Observation Satellite which is equipped with an SAR in Korea. SAR images are generated by receiving signals reflected from an object by microwaves emitted from a SAR antenna. Because the wavelengths of microwaves are longer than the size of particles in the atmosphere, it can penetrate clouds and fog, and high-resolution images can be obtained without distinction between day and night. However, there is no color information in SAR images. To overcome these limitations of SAR images, colorization of SAR images using Cycle GAN, a deep learning model developed for domain translation, was conducted. Training of Cycle GAN is unstable due to the unsupervised learning based on unpaired dataset. Therefore, we proposed MS Cycle GAN applying multi-scale discriminator to solve the training instability of Cycle GAN and to improve the performance of colorization in this paper. To compare colorization performance of MS Cycle GAN and Cycle GAN, generated images by both models were compared qualitatively and quantitatively. Training Cycle GAN with multi-scale discriminator shows the losses of generators and discriminators are significantly reduced compared to the conventional Cycle GAN, and we identified that generated images by MS Cycle GAN are well-matched with the characteristics of regions such as leaves, rivers, and land.

Green Port Strategies for Reducing Air Pollution in Port of Incheon (대기오염 저감을 통한 인천항의 Green Port 전략)

  • Han, Chul-Hwan
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.1
    • /
    • pp.281-304
    • /
    • 2011
  • In the energy-climate era, pollution emissions from port activities have a significant issue in international shipping and port community. Thus international organization such as IMO and developed countries are seeking to develop various reduction strategies against air pollution. However Korea has recently conducted several studies concerning air pollution in port industry. The main purpose of the paper is to suggest emission reduction strategies for bulk terminal in Port of Incheon, which handles large amount bulk cargoes as a gateway for the metropolitan area. For this aim, the clean air strategies of the world major ports were considered and air pollution reduction strategies were suggested. The main findings of this paper are as follows. First, the emission reduction strategies for container terminal are should be integrated based on technologies changes, operational changes and market-based measures. Second, the emission reduction strategies for bulk terminal can be effective when use innovative measures during loading, unloading and storage process such as telescopic cascade trimming chute, snake sandwich equipment, dry fog system and dome structure. Finally, investigation on actual conditions of air pollution in Korean ports and development of environmental evaluation scheme for persisting monitoring should be conducted.

A Study on Quality Improvement for the Prevention of Water Infiltration and Corrosion of Helicopter MRA Control-Rod (회전익 항공기 MRA 조종로드 방수 및 부식 방지에 관한 연구)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.92-100
    • /
    • 2017
  • The Helicopter MRA Control Rod System has the important function of controlling the speed, height, and direction of helicoptersby adjusting the main rotor disc. However, the ingress of water into the inner control rod can cause ice damage in the rod during winter operation and also corrosion;these defects need to be rectified. The water flowed into the control rod through the upper side space, and the rod was cracked during icing expansion occurring at low temperature. The corrosion occurred due to the lack of coating process during the manufacturing process. To resolve these problems, the upper rod was sealed to prevent water inflow and a coating process was added to prevent corrosion. These solutions were verified by awaterproof test and a salt fog test. The phenomena, causes and measures were reviewed and the methods of improvement were established and proven. This proposed technology to prevent water infiltration and corrosion will contribute to the safety of rotary wing aircraft.

A Historical Review on the Introduction of Chugugi and the Rainfall Observation Network during the Joseon Dynasty (조선시대 측우기 등장과 강우량 관측망에 대한 역사적 고찰)

  • Cho, Ha-man;Kim, Sang-Won;Chun, Young-sin;Park, Hye-Yeong;Kang, Woo-Jeong
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.719-734
    • /
    • 2015
  • Korea is one of the country with the world's oldest meteorological observation records. Starting with first meteorological record of fog in Goguryeo in the year of 34 BC, Korea had left a great deal of quantitative observation records, from the Three Kingdoms Period to Goryeo to Joseon. During the Joseon Dynasty, with a great attention by kings, efforts were particularly made to measure rainfall in a systematic and scientific manner. In the 23rd year of King Sejong (1441), the world's first rain gauge called "Chugugi" was invented; in the following year (1442), a nationwide rainfall observation network was established. The King Sejong distributed Chugugi to 350 observation stations throughout the state, even to small towns and villages, for measuring and recording rainfall. The rainfall observation using Chugugi, initiated by King Sejong, had been in place for about 150 years, but halted during national disturbances such as Japanese invasion of Korea in 1592. Since then, the observation had been forgotten for a long time until the rainfall observation by Chugugi was resumed in the 48th year of King Yeongjo (1770). King Yeongjo adopted most of the existing observation system established by King Sejong, including the size of Chugugi and observation rules. He, however, significantly reduced the number of Chugugi observation stations to 14, and commanded the 352 local authorities such as Bu, Gun, Hyeon to conduct "Wootaek", a method of measuring how far the moisture had absorbed into the soil when it rains. Later on, six more Chugugi stations were established. If the number of stations of Chugugi and Wootaek are combined together, the total number of rainfall observation station in the late period of Joseon Dynasty was 372. The rainfall observation with Chugugi during the Joseon Dynasty is of significance and excellence in three aspects: 1) the standard size of Chugugi was so scientifically designed that it is as great as today's modern rain gauge; 2) rainfall was precisely measured, even with unit of Bun (2 mm); and 3) the observation network was distributed on a nationwide basis.

Proper Application Concentration of Oleic Acid for Eco-friendly Control of Whiteflies by Two-fluid Fogging System in Greenhouses (이류체 포그 시스템을 이용한 친환경적 가루이 방제시 올레산의 적정 농도)

  • Kim, Sung Eun;Lee, Sang Don;Lee, Moon Haeng;Sim, Sang Youn;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.299-304
    • /
    • 2012
  • In this work, we experimented with the two-fluid fogging system that eco-friendly prevents whiteflies in greenhouses in order to find the optimal concentration of oleic acid supplied through the system and to evaluate the control value of three consecutive treatments. The first experiment, which was to find the optimal concentration of oleic acid, used "Dotaerang Gold" tomatoes grown in stand-alone plastic greenhouse at Buyeo Tomato Experiment Station. We tested three levels of concentration of oleic acid, which were 0, 2000, and 4000 ppm. The second experiment, which was to evaluate the control value of three consecutive treatments of oleic acid, used "Rokusanmaru" tomatoes grown in Venlo type glasshouse at Gyeonggi-Do Agricultural Research & Extension Services. In this experiment, oleic acid of 2000 ppm was applied three times with two days intervals. The number of whiteflies was counted 2 two days after the last application of oleic acid. Even when oleic acid was not being applied, the two-fluid fogging system was run from 9:00 am to 5:00 pm whenever the temperature is higher than $25^{\circ}C$ or the humidity is lower than 75%. In the first experiment, the control value was 81.6% with 2000 ppm of oleic acid and 93.6% with 4000 ppm. It means that the higher the concentration is, the greater the control value. In the second experiment, 2000 ppm treatment resulted in 85.8% of the control value, which is higher than the required standard for insecticides. Hence, spraying oleic acid with the concentration of 2000 ppm three times with two days intervals turned out to be a very effective in the eco-friendly prevention of whitefly.

Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray 'Ligularia stenocephaia' (곤달비 여름재배 시 냉각방법과 냉수호스베드재배가 생육 및 미기상에 미치는 영향)

  • Kim, Ki-Deog;Lee, Eung-Ho;Kim, Won-Bae;Lee, Jun-Gu;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam;Jang, Suk-Woo;Hong, Soon-Choon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenaray 'Ligularia stenocephala'. When the root-zone was cooled with 240 L/hr flow rate of $13^{\circ}C$ ground water using water hose, the temperature was lowered approximately by 2 to $3^{\circ}C$ than that of control. The growth of narrowhead goldenaray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to $22^{\circ}C$ diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by $0.5^{\circ}C$ and $3^{\circ}C$ compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenaray leaves. This system might be practically used both at summer and winter season for the cultivation of narrow head goldenaray by part cooling or heating around root-zone and plant canopy.

Weed Competition and Herbicide Response of Rice under the Foggy Condition II. Growth and Weed Competition of Rice (안개조건하(條件下)에서 벼(Oryza sativa L.)의 잡초경합(雜草競合)과 제초제(除草劑) 반응차이(反應差異)에 관(關)한 연구(硏究) II. 벼의 생장(生長)과 잡초경합(雜草競合))

  • Guh, Ja-Ock;Lee, Min-Soo;Kuk, Yong-In;Chon, Sang-Uck
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.221-231
    • /
    • 1995
  • The objectives of the present study were to find out the differences in growth and weed competition of rice under the foggy and non-foggy condition, and finally, the fundamental data for the establishment of the paddy weed control system under the locational foggy regions. The research was carried out on tin trays ($0.12m^2$) in greenhouse equipped with an Auto Foggy System(SAE KI RTN Co.). The results are summarized as follows: Exp. I. Difference in rice growth under the foggy and non-foggy condition. 1. While the plant height was not affected, the number of tillers was decreased by the foggy condition. The ratio of the number of effective tiller, however, became higher under the foggy condition. 2. Due to the fog present, the heading rate was decreased and heading time was delayed. 3. The foggy condition did not affect the dry weight of rice straw whether they were grown under the foggy or non-foggy condition. However, yield components such as the number of ears, the number of grains per ear, thousand kernel weight and percentage of ripeness were reduced. Particularly, weights of perfect brown and unpolished rice were also decreased. Exp. II. Effect of the duration of competition between weed and rice grown under the foggy condition on the growth of rice plant. 1. There was no difference in the height of rice grown under a different duration of competition. There was a clear tendency that the number of tillers of rice grown under the foggy condition was decreased as the duration of competition was decreased. 2. When the duration of competition was longer than 60 days, the heading rate was decreased and the initiation of heading was also delayed by 2-4 days. 3. Under the foggy condition, the duration of competition for more than 40 days affected dry weight of rice straw and the difference in yield was greatest in the non-competition and competition for more than 40 days.

  • PDF

Clinical analysis of pediatric patients who visited Masan Samsung Emergency Center (일개 종합병원 응급의료센터에 내원한 소아청소년 환자에 대한 임상 분석)

  • Yoo, Jae Wook;Lee, Jun Hwa
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.314-322
    • /
    • 2010
  • Purpose : Through a clinical and retrospective analysis of pediatric patients who visited the Regional Emergency Medical Center of Masan Samsung Hospital from January 2007 to December 2008, we characterized pediatric and adolescent emergency patients to improve emergency care in future. Methods : We reviewed the medical records of 14,065 pediatric patients below 19 years of age. Results : The male to female ratio was 1.5:1, and the most common age group was less than 3 years (49.6%). The peak month was May (10.0%), the peak day of the week was Sunday (24.7%), and the peak time of day was 20:00-0:59 (8.5%). There was no difference in the number of visits per day based on weather (sunny, rain [below 10 mm per day], snow, and fog) or daily temperature difference; however, visits increased on sandy, dusty days and decreased on rainy days with more than 10 mm of rain per day. Based on the international classification of disease (ICD)-10 system, the most common disease code was code R (symptoms, sign, and abnormal clinical laboratory finding) (31.5%), and the most common symptom was fever (13.1%). Final outcomes were discharged (73.8%), admitted (25.7%), transferred (0.4%), and expired (0.1%). In adolescent patients aged 15-9 years, the most common disease code was Injury & Poisoning (code S&T, 36.9%); the most common symptom was abdominal pain (9.6%). Conclusion : Pediatric patients visiting the emergency center were most likely to be male and under 3 years of age and to visit between 20:00 and 21:00 on Sundays and in May, and the most common symptom was fever. Differences between adolescents and pediatric patients showed that adolescents had a higher visiting rate with abdominal pain and a larger temperature difference.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.