• Title/Summary/Keyword: focused laser beam

Search Result 137, Processing Time 0.025 seconds

Research on BTU and Short-axis Geometry of Line-beam Optics for LLO Applications (레이저 박리용 선형 빔 광학계의 빔 변환 모듈과 단축 형상에 대한 연구)

  • Lee, Seungmin;Lee, Gwangjin;Kim, Daeyong;Lee, Sanghyun;Jung, Jinho
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.276-285
    • /
    • 2021
  • This paper reports the study of the line-beam optical system of the laser lift-off (LLO) equipment used in the OLED manufacturing process. To obtain both a long process depth and a narrow width of the line beam, even with the poor M2 value of the laser source, the research is focused on the optical system, including the beam transformation unit (BTU). We also propose optical configurations for the super-Gaussian distribution and the fiber-based BTU for the flat-top distribution.

Microprocessing of Ferrite Using Focused Laser Beam in $CCl_2F_2$ Gas Atmosphere ($CCl_2F_2$ 가스분위기에서 집속레이저빔을 이용한 페라이트의 미세가공)

  • Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2553-2555
    • /
    • 1998
  • A single crystal Mn-Zn ferrite was directly etched by focused $Ar^+$ laser beam in $CCl_2F_2$ gas atmosphere. AES has been performed for locally investigating the surface composition of an etched layer. MnCl, ZnCl being created after the substrate and $CCl_2F_2$ chemically reacting was remained in the vicinity of laser irradiation area because of their low vapor pressure. Various patterns using computer were formed on the substrate. The etched grooves and patterned shapes were observed by SEM measurement.

  • PDF

Micro-Processing of Glass Substrates Using a Laser (레이저를 이용한 유리기판의 미세가공(微細加工))

  • Lee, Cheon;Toyoda, Koichi
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1425-1427
    • /
    • 1994
  • Laser ablation of glass substrates (8K-7 and synthetic quartz) using a transversely excited atmospheric (TEA) $CO_2$ laser has been inverstigated to obtain high speed etching. The ablation occurs by local heating of a substrate with a focused TEA-$CO_2$ laser beam. The dependence of ablation rate on pulse count and repetition-rate of laser has been discussed.

  • PDF

CO2 Laser Scribing Process of Soda Lime Glass (소다석회유리의 CO2 레이저 스크라이빙 가공)

  • Kang, Seung-Gu;Shin, Joong-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.74-81
    • /
    • 2019
  • This study reports the CW $CO_2$ laser scribing of soda lime glass. In this study, scribing experiments are carried out at different laser powers, scan speeds, and focal positions to investigate the effect of the process parameters on the interaction characteristics between a laser beam and glass. In particular, the interaction characteristics are analyzed and described with the input laser energy per unit length. According to the experimental results, the damage threshold for the glass surface was found to exist between 0.072 and 0.08 J/mm. The input laser energy in this region induced partial melting of the surface and grain-shaped cracks. These cracks tended to increase as the input laser energy increased. At the laser input energy larger than 1 J/mm, a huge crack propagating along the scan direction was produced, and the volume below the scribed area was fully melted. The growth of this crack finally resulted in the complete cutting of the glass at the input laser energy above 8 J/mm. It was found that both the width and depth of the scribed line increased with increasing input laser energy. For the beam focusing at the rear surface, the width of the scribed line varied irregularly. This could be ascribed to the increased asymmetry of the beam intensity distribution when the laser beam was focused at the rear surface. Under this condition, a large burr was only produced on one side of the scribed line.

Painless Microjet Injector Using Laser Pulse Energy (레이저 펄스 에너지를 이용한 무통증 마이크로젯 약물전달시스템)

  • Yoh, Jai-Ick;Han, Tae-Hee;Hah, Jung-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.547-550
    • /
    • 2011
  • We have developed a laser-based needle-free liquid drug-injection device. A laser beam is focused inside the liquid contained in the rubber chamber of a micro-scale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is less than 100 ${\mu}m$, and we verify that the injected microjet is fast enough to penetrate soft human tissue. In the experiment, the microjet penetrated a 5% gelatin-water solution that replicates the human thrombus and pork-fat tissue.

Phase-change optical media for computer data storage (컴퓨터 정보저장용 상변화형 광기록매체)

  • 김명룡
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.229-236
    • /
    • 1995
  • Multimedia has created a system environment that needs a combination of diverse peripherals, faster I/O, and easier configuration. The sheer volume of data one can expect with multimedia hardware and applications storage systems of higher capacity and faster data transfer rate. Unlike the magneto-optical(MO)disk technology which uses bias magnetic field in writing, both the reading and the writing in the phase change (PC) technology are performed only by laser light. In PC optical media, an active layer is reversibly converted between amorphous state and crystalline state by changing irradiation conditions of focused laser beam. Thus, as compared with MO disk, the PC disk has such great advantages that signals can be reproduced by change of reflectance of laser beams in the same manner as the compact disc. The reflectivity of a phase-change spot can be altered in a single pass under the head only through modulation of laser power. The principles and the current status of phase-change optical recording media combined with possible applications are discussed in the present article.

  • PDF

Development of a painless injector using high speed laser propulsion and its spin-off to medical industry (고속레이저추진원리를 활용한 무통증 주사기의 개발 및 의료산업으로의 Spin-off)

  • Han, Tae-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.326-330
    • /
    • 2010
  • A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of micro scale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is 125 ${\mu}m$ and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  • PDF

Study on the nonuniform modification of laser ablated HTS surface (레이저 융제된 HTS 표면의 불균일한 변조에 대한 연구)

  • Jeong, Young-Sik;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.251-253
    • /
    • 1996
  • High temperature superconducting (HTS) target has been irradiated by excimer laser beam. The surface of HTS target has been changed and showed the formation of cones. The laser ablated HTS target surface has been systematically studied using a scanning electron microscope. A KrF excimer laser with a wavelength of 248 nm was used to ablate the HTS YBCO target. The size of laser beam focused on the target showed a rectangular shape of $9.7{\times}2\;mm^2$. The image of SEM shows the difference between the shapes of cones fanned at the boundary and at the center of the ablated area after 1,000 laser pulses.

  • PDF

Measurement of Optical Properties of Micromirror (마이크로 미러의 광학적 특성 측정)

  • Kim, Do-Hyeong;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1954-1956
    • /
    • 1996
  • In this paper, we measured the reflectance of the $100{\mu}m{\times}100{\mu}m$ micromirror. In order to reduce the size of the HeNe laser beam, an eyepiece and an objective lens were used. CCD camera was used to the monitor the position and focusing. It was found that the diameter of the focused laser beam was about $3{\mu}m$. The reflectance of the reflectance of the micromirror was over the surface and 87% of the commercial mirror.

  • PDF