• Title/Summary/Keyword: foaming properties.

Search Result 335, Processing Time 0.022 seconds

The Effect of Gas Absorption Induced a Change of Glass Transition Temperature in Microcellular Foamed Plastics (초미세 발포 플라스틱의 유리전이온도를 변화시키는 가스 용해량의 영향)

  • Hwang, Yun-Dong;Cha, Seong-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.816-822
    • /
    • 2001
  • The thermoforming process is widely used in the plastics industry to produce articles for the packaging, automotive, domestic construction and leisure industries. The microcellular foaming process appeared at M.I.T. in 1980s to save a quantity of polymer materials and increase their mechanical properties. The glass transition temperature of polymer materials is one of many important process variables in appling the microcellular foaming process to the conventional thermoforming process. The goal of this research is to evaluate the relation between gas absorption and glass transition temperature in batch process using microcellular foaming process. The weight gain ratio of polymer materials has a conception of gas absorption. Polymers such as acrylonitrile-butadiene-styrene(ABS), polystyrene(PS) have been used in this experiment. According to conventional Chows model and Cha-Yoon model, it was estimated with real experimental result to predict a change of glass transition temperature as a function of the weight gain ratio of polymer materials in batch process to gain microcellular foamed plastic products.

An Experimental Study on the Insulation Property of Light-Weight Foamed Concrete according to Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 단열특성에 관한 실험적 연구)

  • Choi, Hun-Gug;Sun, Joung-Soo;Lee, Jung-Goo;Choi, Duck -Jin;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • Recently, use of light-weight panel is increasing in building. Styrofoam sandwich panel is inexpensive and it is excellent in insulation ability and constructability. But styrofoam of panel inside is low ignition point. Consequently, when panel is fired, it is occur in poisonous gas. On the other hand, light-weight foamed concrete is excellent in insulation ability, fire resistance due to inner pore. Properties of light-weight concrete is influenced by foaming agent type. Accordingly, this study investigate in insulation property of according to foaming agent type in order to using light-weight foamed concrete instead of styrofoam. As a results, Non-heating zone temperature of light-weight foamed concrete of using AP, FP are lower than light-weight foamed concrete of using AES. Light-weight foamed concrete of using AES, FP are satisfied with fire performance of two hours at foam ratio 50, 100. Light-weight foamed concrete of using AP is satisfied with fire performance of two hours at AP ratio 0.1, 0.15. Insulation property is better closed pore by made AP, FP than open pore by made AES.

  • PDF

Fabrication of porous clay ceramics using sufactant (계면활성제를 이용한 점토질 다공체 세라믹스 제조에 관한 연구)

  • 김윤주;배옥진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 2002
  • Porous clay ceramics was fabricated using the surfactant as a foaming agent in the secondary-clay produced at Young-Am area in Chun-Nam province. The concentration of surfactant in ceramic slurry was the key factor controlling the pore characteristics and physical properties of the porous ceramics. The more increase of the surfactant concentration increase the more foaming ability and the stability of foamed layer were improved, but the foaming ability was limited within 6.0 wt% of surfactant because the initial viscosity of the slurry increased with increasing the amounts of surfactant. The formed specimen were sintered at both $1150^{\circ}C$ and $1200^{\circ}C$, the porous ceramics showed 0.9 of specific gravity, 50% of water absorption, 45% of apparent porosity, 14% of shrinkage and 70 kg/$\textrm{cm}^2$ of compressive strength.

Effects of Diols on the foaming and emulsion properties in surfactant solutions

  • Lee, Giam;Oh, Seong-Geun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.488-498
    • /
    • 2022
  • The effects of 1,3-Butanediol, 1,2-Pentanediol, and 1,2-Hexanediol in surfactant solutions on cmc, surface tension, foaming and emulsifying properties were determined. The addition of diols in aqueous surfactant solution decreased cmc and surface tension, and enhanced the foaming and emulsifying power. This trend is more significant by the longer hydrocarbon chain length of the diols. This property was confirmed because the diol's alkyl chain and the hydrophobic interaction with the surfactant reduce the cohesive force of water and increase the interaction between the head groups of the surfactant at interface. In addition, MIC test was conducted to determine the preservative power of each diol, and as a result, the antibacterial activity was effective in the order of 1,2-HDO > 1,2-PDO > 1,3-BDO. The results of this study show that diol can be applied to cosmetics as an auxiliary surfactant and antibacterial agent.

Synthesis of Surface Active Properties of Destructible Surfactants with 1,3-Dioxane (1,3-디옥산을 함유한 분해성 계면활성제의 합성의 및 계면 특성)

  • Kim, Chi-Hoi;Roh, Yun-Chan;Kim, Yu-Ok;Nam, Kie-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.61-71
    • /
    • 1996
  • In acid-catalyzed acetal cyclization of long aliphatic aldehydes($R=n-C_7H_{15}$ ; $n-C_9H_{19}$ ; $n-C_{11}H_{23}$) with 1,1,1-tris(hydroxymethyl)propane, 2-alkyl-5-hydroxymethyl-5-ethyl-1,3-dioxanes were obtained. The final products, sodium 2-alkyl-5-(sulfonatedpropylethermethyl)-5-ethyl-1,3-propanesultion in the presence of sodium hydride. These compounds were a new group of destructible surfactants which were readily hydrolyzed and oxidized in natural water reservoirs. Physical properties of these new compounds involved some surface properties such as Krafft point(Kp), critical micelle concentration(cmc), surface tension of aqueous solutions near cmc(${\gamma}_{min}$), foaming power, emulsion power and hydrolysis properties were determined. The destructible surfactants containing 1,3-dioxane ring were synthesized to about $85{\pm}5.5%$ yield. The cmc values of the compounds by ring method were assumed to $0.5{\sim}5.0{\times}10^{-3}mol/L$ range and surface tensions at cmc were $29.5{\sim}33.0dyne/cm$ respectively at $25^{\circ}C$. The foaming power and foam stability were $170{\sim}230mm$ and $52{\sim}135mm$ respectively at $1{\times}10^{-2}mol/L$, foam was occurred rarely below $1{\times}10^{-3}mol/L$. The emulsion property of liquid paraffin was better than that of soybean oil. For hydrolysis property with ph and time, these compounds were decomposed within about 200minutes at $ph1{\sim}2$. Hopefully these compounds are expected to be a good O/W emulsifier that have decomposability in acid and may be used in the process which do not need foaming.

Preparation & Properties of the Flame Retarded NBR Foams with Phosphorus/Nitrogen-Containing Flame Retardants (인/질소계 난연제를 포함한 난연 NBR 발포체의 제조 및 특성)

  • Jo, Byung-Wook;Moon, Sung-Chul;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.105-120
    • /
    • 2004
  • The flame retarded NBR foams were prepared with metal hydroxides and various phosphorus/nitrogen-contain ing flame retardants. The dependency of the phosphorus content on thermal properties, flame retardancy, smoke density, and foaming properties were investigated in the foams. Foaming properties and morphology of the flame retarded NBR foams with P/N flame retardants( ${\le}10 phr$) were similar to those of the foams without P/N ones but containing metal hydroxides The flame retardancy of the foams was improved with increasing the phosphorus content and char formation under combustion atmosphere. The cone-calorimeter test and LOI index were also coincided with the TGA analysis quite well. The heat release rate (HRR), total heat release (THR), and effective heat of combustion (EHC) were decreased, whereas the carbon monoxide yield was increased with increase of the phosphorus content of P/N flame retardant. The smoke density values were closely related with CO yield values obtained by the cone-calorimeter test due to the high and hard char formation.

Effects of Carbon Fiber on Mechanical Behaviour of Al2O3 Porous Ceramics

  • Basnet, Bijay;Lim, Hyung Mi;Lee, Kee Sung;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.513-520
    • /
    • 2019
  • This study reports the improvement of mechanical properties of Al2O3 porous ceramics from colloidal suspension with the addition of carbon fiber by direct foaming. The initial colloidal suspension of Al2O3 was partially hydrophobized by surfactant to stabilize wet foam with the addition of carbon fiber from 2 to 8 wt% as stabilizer. The influence of carbon fiber on the air content, bubble size, pore size and pore distribution in terms of wet foam stability and physical properties of porous ceramics were discussed. The viscosity of the colloidal suspension was increased giving solid like properties with the increased in carbon fiber content. The mechanical properties of the sintered porous samples were investigated by Hertzian indentation test. The results show the wet foam stability of more than 90% corresponds to compressive loading of 156.48 N and elastic modulus of 57.44 MPa of sintered sample with 8 wt% of carbon fiber content.

Characterization of Biomass-Based Foam Structures for Home-Meal-Replacement Containers (가정간편식 용기용 바이오매스 기반 발포구조체의 특성에 관한 연구)

  • Kim, Inae;Kim, Sumin;Kambiz, Sadeghi;Han, Jeonggu;Hwang, Kiseop;Kwon, Hyukjoon;Kim, Yongsu;Yoo, Seung Ran;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2020
  • A series of foamed plastic sheets containing biomass (as HMR container) were developed via different foaming process temperatures, and their density, porosity, WVTR, and pore morphology were evaluated. Thermal stability of samples during re-heating the food in oven, change in morphology, density, porosity, and WVTR were investigated using a simulated thermal shock process according to MIL-STD-883E assay. As such, the pore size of samples was generally increased with increasing temperature of the foaming process. It can be explained that as foaming temperature increased, the viscosity of molten resins and the repulsive force against pore expansion decreased. In addition, an increase in the thermal shock cycle reduced the pore size and WVTR, while density increased because high temperature treatment that softened the sheet matrix was followed by a low temperature incubation, which contracted the matrix, thereby changing the physical and morphological properties of samples. However, an insignificant change in density was observed and WVTR tended to be decreased, indicating that as-prepared foamed plastic sheets could be used as a high thermal stable container for HMR application. Therefore, it found that the properties of newly developed HMR containers containing biomass were dependent on the foaming process temperature. Moreover, to better understanding of these newly developed containers, further investigations dealing with foaming process temperature based on various food items and cooking conditions are needed.

A study on the fabrication of foamed glass by using refused coal ore and its physical properties (석탄 폐석을 이용한 발포유리의 제조 및 물리적 특성 연구)

  • Lim, Tae-Young;Ku, Hyun-Woo;Hwang, Jong-Hee;Kim, Jin-Ho;Kim, Jung-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.266-273
    • /
    • 2011
  • Foamed glass was fabricated by using glass powder and foaming agents. For the glass powder, we used sodalime glass which's manufactured by using refused coal ore obtained as by-product from Dogye coal mine in Samcheok. And for the foaming agents, we used Calcium carbonate, Calcium phosphate and powder of shale type refused coal ore itself which has high content of carbon materials. We additionally used liquid binder for forming, and mixed together. And we formed rectangular shape and treated $800^{\circ}C$ for 20 min in an electrical furnace. The various kinds of foam glass samples were fabricated according to the kinds of foaming agents. The physical properties of samples, as specific gravity and compressive strength, were measured. Pore structure of each samples were investigated too. Foam glass with specific gravity of 0.4~0.7 and compressive strength of 30~72 kg/$cm^2$. Especially we get satisfying foam glass sample with low specific gravity of 0.47 and high compressive strength of 72 kg/$cm^2$ by the use of liquid calcium phosphate as foaming agent. It also had small and even shape of pore structure. Therefore, it is concluded that refused coal ore can be used for raw materials to manufacture secondary glass products such as a foamed glass panel for construction and industrial materials.

Functional Properties of Modified Soybean Protein Isolate by Dimethylglutarylation (Dimethylglutarylation에 의한 변형대두단백질의 기능적 특성)

  • Choi, One-Kyun;Jung, Chul-Won
    • Journal of the Korean Society of Food Culture
    • /
    • v.14 no.5
    • /
    • pp.477-485
    • /
    • 1999
  • This study was conducted to improve the functional properties of soybean protein isolate by dimethylglutarylation and acetylation. Amino acid composition and solubility of modified soybean protein by dimethylglutarylation were not changed, but lysine and trypsin inhibitor activity was decreased an isoelectric point was moved from pH5 to pH4 as a result of modification. Emulsification capacity and stability, foaming capacity and thermal stability were increased by the modification. In that 91% dimethylglutarylated protein did not coagulate when heating at $100^{\circ}C$ for 20 min. while its foaming stability was decreased. Whereas specific gravity was decreased by the modification of the soybean protein, relative viscosity and whiteness were improved. Generally, dimethylglutarylation produced more conformational changes in protein system than did in acetylation.

  • PDF