DOI QR코드

DOI QR Code

Effects of Diols on the foaming and emulsion properties in surfactant solutions

  • Lee, Giam (Department of Chemical Engineering, Hanyang University) ;
  • Oh, Seong-Geun (Department of Chemical Engineering, Hanyang University)
  • Received : 2022.05.20
  • Accepted : 2022.08.24
  • Published : 2022.08.30

Abstract

The effects of 1,3-Butanediol, 1,2-Pentanediol, and 1,2-Hexanediol in surfactant solutions on cmc, surface tension, foaming and emulsifying properties were determined. The addition of diols in aqueous surfactant solution decreased cmc and surface tension, and enhanced the foaming and emulsifying power. This trend is more significant by the longer hydrocarbon chain length of the diols. This property was confirmed because the diol's alkyl chain and the hydrophobic interaction with the surfactant reduce the cohesive force of water and increase the interaction between the head groups of the surfactant at interface. In addition, MIC test was conducted to determine the preservative power of each diol, and as a result, the antibacterial activity was effective in the order of 1,2-HDO > 1,2-PDO > 1,3-BDO. The results of this study show that diol can be applied to cosmetics as an auxiliary surfactant and antibacterial agent.

본 연구에서는 계면활성제 용액에서 1,3-Butanediol, 1,2-Pentanediol, 1,2 Hexanediol 들이 cmc, 표면장력, 기포력 및 유화력에 미치는 영향을 연구 하였다. 계면활성제 수용액에 diol의 첨가는 cmc와 표면장력 저하를 초래 하였으며 기포력 및 유화력은 향상 되었다. 이러한 경향은 diol의 사슬길이가 길수록 현저 하였다. 이러한 특성은 diol의 알킬사슬과 계면활성제 분자간에 소수성 상호작용이 물분자간의 응집력을 감소시키고, 계면에서 계면활성제 headgroup간 상호작용을 증진시키기 때문이다. 또한 각 diol의 방부력을 평가하기 위하여 MIC 측정을 수행 하였으며 방부력은 1,2-HDO > 1,2-PDO > 1,3-BDO 순서였다. 본 연구의 결과들은 diol들이 화장품에서 보조 계면활성제와 방부제로 이용될 수 있음을 확인 시켜 주웠다.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No.20202020800330).

References

  1. A.P. Zeng, W. Sabra, "Microbial production of diols as platform chemicals: recent progresses", Current Opinion in Biotechnology, Vol. 22, No. 6, pp. 749-757, (2011). https://doi.org/10.1016/j.copbio.2011.05.005
  2. R.A. Abdel-Rahem, "1, 3-Butanediol as a co-solvent for the surfactant solutions", Colloid and Polymer Science, Vol. 290, No. 10, pp. 907-917, (2012). https://doi.org/10.1007/s00396-012-2603-4
  3. M. Gudelj, P. Surina, L. Jurko, A. Prkic, P. Boskovic, "The Additive Influence of Propane-1,2-Diol on SDS Micellar Structure and Properties", Molecules, Vol. 26, No. 12, Article No. 3773, (2021). https://doi.org/10.3390/molecules26123773
  4. J. Y. Suh, M. E. Yun, Y. S. Lee, S. H. Xuan, D. S. Park, S. N. Park, "Preservative efficacies according to the composition of 1, 3-butylene glycol and alkane diols in cosmetics", Journal of the Society of Cosmetic Scientists of Korea, Vol. 44, No. 4, pp. 363-373, (2018). https://doi.org/10.15230/SCSK.2018.44.4.363
  5. N. Scholz, T. Behnke, U. Resch-Genger, "Determination of the critical micelle concentration of neutral and ionic surfactants with fluorometry, conductometry, and surface tension-a method comparison", Journal of Fluorescence, Vol. 28, No. 1, pp. 465-476, (2018). https://doi.org/10.1007/s10895-018-2209-4
  6. S. F. Burlatsky, V. V. Atrazhev, D. V. Dmitriev, V. I. Sultanov, E. N. Timokhina, E. A. Ugolkova, S. Tulyani, A. Vincitore, "Surface tension model for surfactant solutions at the critical micelle concentration", Journal of colloid and interface science, Vol. 393, No. 1, pp. 151-160, (2013). https://doi.org/10.1016/j.jcis.2012.10.020
  7. S. Woolfrey, G. Banzon, M. Groves, "The effect of sodium chloride on the dynamic surface tension of sodium dodecyl sulfate solutions", Journal of colloid and interface science, Vol. 112, No. 2, pp. 583-587, (1986). https://doi.org/10.1016/0021-9797(86)90129-3
  8. S.-Y. Lin, Y.-Y. Lin, E.-M. Chen, C.-T. Hsu, C.-C. Kwan, "A study of the equilibrium surface tension and the critical micelle concentration of mixed surfactant solutions", Langmuir, Vol. 15, No. 13, pp. 4370-4376, (1999). https://doi.org/10.1021/la981149f
  9. L. S. Wan, P. K. Poon, "Effect of salts on the surface/interfacial tension and critical micelle concentration of surfactants", Journal of pharmaceutical sciences, Vol. 58, No. 12, pp. 1562-1567, (1969). https://doi.org/10.1002/jps.2600581238
  10. Y. Shi, H. Q. Luo, N. B. Li, "Determination of the critical premicelle concentration, first critical micelle concentration and second critical micelle concentration of surfactants by resonance Rayleigh scattering method without any probe", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 78, No. 5, pp. 1403-1407, (2011). https://doi.org/10.1016/j.saa.2011.01.018
  11. R. F. Li, W. Yan, S. Liu, G. J. Hirasaki, C. A. Miller, "Foam mobility control for surfactant enhanced oil recovery", SPE Journal, Vol. 15, No. 4, pp. 928-942, (2010). https://doi.org/10.2118/113910-PA
  12. A. Belhaij, A. AlQuraishi, O. Al-Mahdy, "Foamability and foam stability of several surfactants solutions: the role of screening and flooding", SPE Saudi Arabia section technical symposium and exhibition, Vol. 15, No. 4, SPE-172185 MS, (2014).
  13. E. N. Stasiuk, L. L. Schramm, "The temperature dependence of the critical micelle concentrations of foam-forming surfactants", Journal of colloid and interface science, Vol. 178, No. 1, pp. 324-333, (1996). https://doi.org/10.1006/jcis.1996.0120
  14. I. S. Ranjani, K. Ramamurthy, "Relative assessment of density and stability of foam produced with four synthetic surfactants", Materials and Structures, Vol. 43, No. 10, pp. 1317-1325, (2010). https://doi.org/10.1617/s11527-010-9582-z
  15. Y. Sun, X. Qi, H. Sun, H. Zhao, Y. Li, "Understanding about how different foaming gases effect the interfacial array behaviors of surfactants and the foam properties", Langmuir, Vol. 32, No. 30, pp. 7503-7511, (2016). https://doi.org/10.1021/acs.langmuir.6b02269
  16. S. Friberg, P. O. Jansson, E. Cederberg, "Surfactant association structure and emulsion stability", Journal of Colloid and Interface Science, Vol. 55, No. 3, pp. 614-623, (1976). https://doi.org/10.1016/0021-9797(76)90072-2
  17. B. P. Binks, P. D. I. Fletcher, M. A. Thompson, R. P. Elliott, "Effect of added diols (glycols) on the emulsion properties of oil, water and surfactant mixtures", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 390, No. 1, pp. 67-73, (2011).
  18. P. Kundu, A. Agrawal, H. Mateen, I. M. Mishra, "Stability of oil-in-water macro- emulsion with anionic surfactant: Effect of electrolytes and temperature", Chemical Engineering Science, Vol. 102, No. 1, pp. 176-185, (2013). https://doi.org/10.1016/j.ces.2013.07.050
  19. T. Tadros, P. Izquierdo, J. Esquena, C. Solans, "Formation and stability of nano-emulsions", Advances in colloid and interface science, Vol. 108, No. 1, pp. 303-318, (2004).
  20. H. Zhao, W. Kang, H. Yang, Z. Huang, B. Zhou, B. Sarsenbekuly, "Emulsification and stabilization mechanism of crude oil emulsion by surfactant synergistic amphiphilic polymer system", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 609, No. 1, Article No. 125726, (2021).
  21. S. A. Medina-Moreno, A. Jimenez- Gonzalez, M. Gutierrez-Rojas, M. A. Lizardi-Jimenez, "Hexadecane aqueous emulsion characterization and uptake by an oil-degrading microbial consortium", International Biodeterioration & Biodegradation, Vol. 84, No. 1, pp. 1-7, (2013). https://doi.org/10.1016/j.ibiod.2013.05.018
  22. S. L. Giles, A. W. Snow, K. M. Hinnant, R. Ananth, "Modulation of fluorocarbon surfactant diffusion with diethylene glycol butyl ether for improved foam characteristics and fire suppression", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 579, No. 1, Article No. 123660, (2019).
  23. S. J. Choi, J. W. Won, K. M. Park, P. S. Chang, "A new method for determining the emulsion stability index by backscattering light detection", Journal of Food Process Engineering, Vol. 37, No. 3, pp. 229-236, (2014). https://doi.org/10.1111/jfpe.12078