• 제목/요약/키워드: fly ash

검색결과 2,131건 처리시간 0.032초

Removal of Heavy Metals from Aqueous Solution by Fly Ash

  • Cho, Hee-Chan;Oh, Dal-Young
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.494-499
    • /
    • 2001
  • The present work investigates the possible use of fly ash for the removal of heavy metal ions from aqueous solutions. Batch experiments were conducted and the influences of metal concentration, pH, and fly ash concentration were investigated. Heavy metals used in these studies were zinc, lead and cadmium. Adsorption studies were done over a range of pH values (3-10) at $25^{\circ}C$ and heavy metal concentrations of 10-400 mg/L using fly ash concentrations of 10, 20 and 40 g/L. Experiments were also conducted without fly ash to determine the extent of heavy metal removal by precipitation. Kinetic and equilibrium experiments were performed and adsorption data were correlated with both Langmuir and Freundlich adsorption models. The results indicate that fly ash can be used as an adsorbent for heavy metals in the aqueous solutions, yet the degree of removal depends on the pH.

  • PDF

고로슬래그미분말 및 플라이애쉬를 사용한 고유동콘크리트의 특성에 관한 연구 (Properties of Self-Compacting Concrete Using Ground Granulated Blast Furnace Slag and Fly ash)

  • 김은겸;박천세;최재진;전찬기;이호석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.89-94
    • /
    • 2003
  • In this research, the physical properties of self compacting concrete using ground granulated blast furnace slag and fly ash as a part of cement were investigated. Concrete using ground granulated blast furnace slag and fly ash was prepared with various ground granulated blast furnace slag(30-50 volume %) and fly ash(10-20 volume %) replacement for cement. The effect of each of the materals, which have effects on self compacting concrete made by the basic mix proportion used granulated blast furnace slag and fly ash after hardening, has been checked. The workability, flowing characteristics, resistance of segregation of materals, air content, and compressive strength of concrete using ground granulated blast furnace slag and fly ash were tested and the results were compared with those of ordinary portland cement concrete. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of concrete using ground granulated blast furnace and slag fly ash within the replacement ratio of 65%

  • PDF

Compaction and unconfined compressive strength of sand modified by class F fly ash

  • Bera, Ashis K.;Chakraborty, Sourav
    • Geomechanics and Engineering
    • /
    • 제9권2호
    • /
    • pp.261-273
    • /
    • 2015
  • In the present investigation, a series of laboratory compaction and unconfined compressive strength laboratory tests has been performed. To determine the effect of compaction energy, type of sand, and fly ash content, compaction tests have been performed with varying compaction energy ($2700kJ/m^3-300kJ/m^3$), types of sand, and fly ash content (0% to 40%) respectively. From the experimental results, it has been found that the optimum value of unconfined compressive strength obtained for a sand-fly ash mixture comprised of 65% sand and 35% fly ash. Based on the data obtained in the present investigation, a linear mathematical model has been developed to predict the OMC of sand-fly ash mixture.

플라이애쉬-하수처리슬러지 혼합물의 지반공학적 특성(지반공학) (Geotechnical properties of Fly ash - Water treatment sludge mixture)

  • 권무남;구정민;이상윤;채교익
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.458-465
    • /
    • 2000
  • Although Fly ash possess viable engineering properties, an overwhelming majority of the fly ash from coal combustion is still placed in storage or disposal sites. Similarly, sludges generated from various water treatment operations are predominantly subject to the fate of land disposal. To prepare sludges for land disposal typically requires time consuming dewatering schemes, which can become extremely difficult to execute dependent upon the composition of the sludge and its affinity for water. This test was undertaken to reuse of fly ash and sludge with mix. In this paper includes of geotechnical properties of fly ash and fly ash-sludge mixture and results of compaction test, unconfined test, falling head test and CBR test and it was analyzed the effect on mixing fly ash with sludge.

  • PDF

플라이 애시를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구 (Experimental Study on physical and Mechanical Properties of Concrete with Fly Ash)

  • 성찬용
    • 한국농공학회지
    • /
    • 제42권3호
    • /
    • pp.107-113
    • /
    • 2000
  • This study is performed to examine the physical and mechanical properties of concrete with fly ash. Test results show that the unit weights of concrete with fly ash are decreased 1-3% and the highest strength is achieved by 10% filled fly ash concrete with it is increased 7% than that of the normal cement concrete. the ultrasonic pulse velocity is in the range of 3.705~4.204m/s and the dynamic and static modulus of elasticity is in the range of 271$\times$103 ~289$\times$103kgf/cm2 and 208$\times$103 ~262$\times$103kgf/cm2 respectively. The acid-resistance is increased with increase of the content of fly ash. It is 1.2 times of the normal cement concrete by 10% filled fly ash concrete and 1.7 times by 30% filled fly ash concrete respectively.

  • PDF

화학적 결합에 의한 Fly ash 경화체의 강도 발현 메카니즘 (Strength Behaviour and Hardening Mechanism of Chemical Bonded Fly Ash Mortar)

  • 조병완;문린곤;박승국;고희철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.373-376
    • /
    • 2005
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_{2}$ and $Al_{2}O_{3}$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^{-}$ through alkali activators. We used alkali activators for supplying it with additional $OH^{-}$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time.

  • PDF

양생온도가 플라이애시를 사용한 콘크리트의 초기강도발현에 미치는 영향 (Effect of Curing Temperature on Early Age Strength Development of the Concrete Using Fly Ash)

  • 한민철;신병철
    • 한국환경과학회지
    • /
    • 제19권1호
    • /
    • pp.105-114
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the compressive strength of the concrete incorporating fly ash. Ordinary Portland cement(OPC). Water to binder ratio(W/B) ranging from 30% to 60% and curing temperature ranging from $-10^{\circ}{\sim}65^{\circ}C$ were also adopted for experimental parameters. Fly ash was replaced by 30% of cement contents. According to the results, strength development of concrete contained with fly ash is lower than that of plain concrete in low temperature at early age and maturity. In high curing temperature, the concrete with fly ash has higher strength development than that of low temperature regardless of the elapse of age and maturity. Fly ash can have much effect on the strength development of concrete at the condition of mass concrete, hot weather concreting and the concrete products for the steam curing.

Development of Carbon-Ceramic Composites using Fly Ash and Carbon Fibers as Reinforcement

  • Manocha, S.;Patel, Rakesh
    • Carbon letters
    • /
    • 제7권1호
    • /
    • pp.27-33
    • /
    • 2006
  • Carbon-ceramic composites were fabricated by using fly ash and PANOX fibers as reinforcement. Fly ash, because of its small size particles e.g. submicron to micron level can be effectively dispersed along with fibrous reinforcements. Phenolic resin was used as carbon precursor. Both dry as well as wet methods were used for forming composites. The resulting composites were characterized for their microstructure, thermal and mechanical properties. The microstructure and mechanical properties of composites are found to be dependent on type of the fly ash, fibrous reinforcements as well as processing parameters. The addition of fly ash improves hardness and the fibers, which get co-carbonized on heat treatment, increase the flexural strength of the carbon-ceramic composites. Composites with dual reinforcement exhibit about 30-40% higher strength as compared to the composites made with single reinforcement, either with fly ash as filler or with chopped fibers.

  • PDF

시멘트 기반 바이오매스 플라이애시 치환율에 따른 경화체의 물리적 특성 (Physical Properties of Matrix with Replacement Ratio of Biomass Fly Ash Based on Cement)

  • 김대연;조은석;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.209-210
    • /
    • 2019
  • Current international concerns are the energy crisis due to climate change and depletion of fossil fuels due to global warming. Korea has a very high dependency on energy imports 93%. In Korea, 63% of the country is forested, and a power plant using wood biomass is being built in Korea. Biomass fly ash, a by-product of biomass energy generation, is now being discarded. There is little research to utilize discarded biomass fly ash. Therefore, this study aims to solve the environmental problems, develop new mixed materials, improve the quality and utilize the biomass fly ash, which is a by-product of the industrial waste. As a result of the experiment, the flowability decreased as the replacement ratio of biomass fly ash increased. As the replacement ratio of biomass fly ash decreased, the amount of air content.

  • PDF

플라이 애쉬 치환에 따른 알칼리-실리카 반응의 팽창저감 효과 (The Effect of Fly Ash Replacement on Alkali - Silica Reaction)

  • 김정은;전쌍순;서기영;진치섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.185-188
    • /
    • 2004
  • The effect of fly ash to prevent detrimental expansion due to alkali -silica reaction was investigated through the ASTM C 1260 method that is one of the most commonly used method because results can be obtained within about 16 days. Reactive aggregate used is a netamorphic rock and sedimentary rock. The replacement proportions of portland cement by fly ash were respectively 0, 5, 10, 15, 25 and 35 percent. Expansion of mortar bars due to alkali-silica reaction decreased with the increase of fly ash content. The results show that the expansion due to alkali-silica reaction is dramatically reduced in the presence of high volume fly ash. When the fly ash content examine from all angles (strength and a flow), the replacement proportions of fly ash is about $25\%$ in order to control on expansion.

  • PDF