• Title/Summary/Keyword: flux-gate

Search Result 51, Processing Time 0.034 seconds

A High-Performance Position Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 리럭턴스 동기전동기의 고성능 제어시스템)

  • 김민회;김남훈;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • This paper presents an Implementation of digital high-performance position sensorless control system of Reluctance Synchronous Motor(RSM) drives with Direct Torque Control(DTC). The system consists of stator flux observer, speed and torque estimator, two digital hysteresis controllers, an optimal switching look-up table, Insulated Gate Bipolar Transistor(IGBT) voltage source inverter, and TMS320C31 DSP board. The stator flux observer Is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. In order to prove the suggested sensorless control algorithm for industrial field application, we have some simulation and actual experiment at low and high speed range. The developed high-performance speed control by fully digital system are shown a good response characteristic of control results and high performance features using 1.0[kW] RSM having 2.57 reluctance ratio of $L_d/L_q$.

The Optimization of Injection Molding System Using Axiomatic Approach (공리적 개념을 적용한 사출성형 시스템의 최적설계)

  • Kim, Jong-Hun;Lee, Jong-Soo;Cha, Sung-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1020-1027
    • /
    • 2003
  • A traditional mold design has been conducted by an experience-based trial and error, whereby the mold designer would decide the gate locations and processing conditions based on the caring characteristics and its functional requirements. The paper suggests an optimal gate location and processing conditions in the injection molding using a global search method referred to as micro genetic algorithm( ${\mu}$ GA). ${\mu}$ GA yields the optimal solution with a small size of population without respect to design variables for saving time that is needed to calculate the fitness of many individuals. Due to the reason, the paper uses a commercial analysis package of injection molding(CAPA) to analysis a state of flux. In addition to that, axiomatic approach .is applied in the beginning of design. It is a useful method to draw a well-organized and reasonable idea to handle a problem.

Fundamental Metrology by Counting Single Flux and Single Charge Quanta with Superconducting Circuits

  • Niemeyer, J.
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Transferring single flux quanta across a Josephson junction at an exactly determined rate has made highly precise voltage measurements possible. Making use of self-shunted Nb-based SINIS junctions, programmable fast-switching DC voltage standards with output voltages of up to 10 V were produced. This development is now extended from fundamental DC measurements to the precise determination of AC voltages with arbitrary waveforms. Integrated RSFQ circuits will help to replace expensive semiconductor devices for frequency control and signal coding. Easy-to-handle AC and inexpensive quantum voltmeters of fundamental accuracy would be of interest to industry. In analogy to the development in the flux regime, metallic nanocircuits comprising small-area tunnel junctions and providing the coherent transport of single electrons might play an important role in quantum current metrology. By precise counting of single charges these circuits allow prototypes of quantum standards for electric current and capacitance to be realised. Replacing single electron devices by single Cooper pair circuits, the charge transfer rates and thus the quantum currents could be significantly increased. Recently, the principles of the gate-controlled transfer of individual Cooper pairs in superconducting A1 devices in different electromagnetic environments were demonstrated. The characteristics of these quantum coherent circuits can be improved by replacing the small aluminum tunnel Junctions by niobium junctions. Due to the higher value of the superconducting energy gap ($\Delta_{Nb}$$7\Delta_{Al}$), the characteristic energy and the frequency scales for Nb devices are substantially extended as compared to A1 devices. Although the fabrication of small Nb junctions presents a real challenge, the Nb-based metrological devices will be faster and more accurate in operation. Moreover, the Nb-based Cooper pair electrometer could be coupled to an Nb single Cooper pair qubit which can be beneficial for both, the stability of the qubit and its readout with a large signal-to-noise ratio..

  • PDF

Development and Performance Evaluation of a Filtration Equipment to Reuse PFC Waste Solution Generated on PFC Decontamination (PFC 제염 시 발생된 PFC 폐액의 재사용을 위한 여과장치 개발 및 성능평가)

  • Kim Gye-Nam;Jeong Cheol-Jin;Won Hui-Jun;Choi Wang-Kyu;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.161-170
    • /
    • 2006
  • PFC(Perfluorocarbon) decontamination process is one of best methods to remove hot particulate adhered on the inner surface of hot cell and surface of equipment in hot cell. It was necessary to develop a filtration equipment to reuse the PFC waste solution generated on PFC decontamination due to the high cost of PFC solution and for minimization of the volume of second waste solution. The filtration equipment was developed to remove hot particulate in PFC waste solution. It was made suitable size and weight in consideration of hot cell gate and crane. And it has wheels for easy movement. Flux of the filtration equipment decreased with particulate concentration increase. It consists of pre-filter($1.4{\mu}m$) and final-filter($0.2{\mu}m$) for protection of the flux decrease along filtration time. It treatment capacity of waste solution is 0.2 L/min.

  • PDF

Vector Controlled Inverter for Elevator Drive (ELEVATOR 구동용 VECTOR 제어 인버터)

  • Shin, H.J.;Jang, S.Y.;Lee, S.J.;Lee, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.627-630
    • /
    • 1991
  • This study is about vector controlled inverter for high quality elevator drive that is to improve the settling accuracy of elevator car and passenger's comfort in commercial buildings. In this study, an instantaneous space vector control type inverter was used to reduce the torque ripple ant to improve the velocity follow-up. This method calculates Instantaneous actual output torque and flux of induction motor by voltage and current, then compares them with a reference values by a speed regulator. The outputs of comparators select a switching mode, for an optimal voltage vector. Also, this study used IGBT (Insulated Gate Bipolar-Transistor), a high speed switching element, to reduce sound noise level, and DSP (Digital Signal Processor) was used to improve the reliability of the control circuit by fully digitalization.

  • PDF

Product's quality improvement plane of parts for Injection Molding using Axiomatic approach (공리적 기법에 의한 품질 향상 방안)

  • Bae J.W.;Park H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.355-356
    • /
    • 2006
  • This paper proposes an Molding error compensation method that improves accuracy with geometry information of injected parts using three-dimensional measuring instrument. a traditional mold design has been conducted by an experience-based trial and error, whereby generally the mold designer would decide the gate location and processing conditions. as a natural consequence, almost all creats inferior goods. It's just a process of trial and error and caught in a vicious circle. Due to this reason, this paper uses a three-dimensional measuring instrument, a commercial analysis package of injection molding(Moldflow, MPI) to analysis a state of flux. In addition to that axiomatic approach.

  • PDF

Implementation of A Sensor System for the Stabilization Control of Ship Antenna (선박용 안테나의 안정화 제어를 위한 센서 시스템의 구현)

  • Son, Young-Dae;Kim, Tae-Woo;Choi, Woo-Jin;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.650-653
    • /
    • 1998
  • In this paper, when we control Elevation Angle and Azimuth Angle of Antenna, intend to implement sensor system for stabilization control of antenna pedestral system because of wind in land, wave and external disturbances such as rolling, pitching, and yawing. Therefore, this sensor system is consist of Tilt Sensor for measuring absolute angle of roll ing and pitching, Level Rate Sensor, Cross Level Rate Sensor, Azimuth Rate Sensor for controlling short_term azimuth angle and Flux Gate Sensor for measuring long_term azimuth angle.

  • PDF

Optimum Hybrid SVPWM Technique for Three-level Inverter on the Basis of Minimum RMS Flux Ripple

  • Nair, Meenu D.;Biswas, Jayanta;Vivek, G.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.413-430
    • /
    • 2019
  • This paper presents an optimum hybrid SVPWM technique for three-level voltage source inverters (VSIs). The proposed hybrid SVPWM technique aims to minimize total harmonic distortion (THD). A new parameter is introduced to incorporate the heterogeneous nature of switching sequences of SVPWM technique. The proposed hybrid SVPWM technique is implemented on a low-cost PIC microcontroller (PIC18F452) and verified experimentally with a 2 KVA three-phase three-level insulated gate bipolar transistor-based VSI. Optimum switching sequence results in the three-level inverter configuration are demonstrated. The proposed hybrid SVPWM technique improves the THD performance by 17.3% compared with the best available three-level SVPWM technique.

Design and Implementation of Direct Torque Control Based on an Intelligent Technique of Induction Motor on FPGA

  • Krim, Saber;Gdaim, Soufien;Mtibaa, Abdellatif;Mimouni, Mohamed Faouzi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1527-1539
    • /
    • 2015
  • In this paper the hardware implementation of the direct torque control based on the fuzzy logic technique of induction motor on the Field-Programmable Gate Array (FPGA) is presented. Due to its complexity, the fuzzy logic technique implemented on a digital system like the DSP (Digital Signal Processor) and microcontroller is characterized by a calculating delay. This delay is due to the processing speed which depends on the system complexity. The limitation of these solutions is inevitable. To solve this problem, an alternative digital solution is used, based on the FPGA, which is characterized by a fast processing speed, to take the advantage of the performances of the fuzzy logic technique in spite of its complex computation. The Conventional Direct Torque Control (CDTC) of the induction machine faces problems, like the high stator flux, electromagnetic torque ripples, and stator current distortions. To overcome the CDTC problems many methods are used such as the space vector modulation which is sensitive to the parameters variations of the machine, the increase in the switches inverter number which increases the cost of the inverter, and the artificial intelligence. In this paper an intelligent technique based on the fuzzy logic is used because it is allows controlling the systems without knowing the mathematical model. Also, we use a new method based on the Xilinx system generator for the hardware implementation of Direct Torque Fuzzy Control (DTFC) on the FPGA. The simulation results of the DTFC are compared to those of the CDTC. The comparison results illustrate the reduction in the torque and stator flux ripples of the DTFC and show the Xilinx Virtex V FPGA performances in terms of execution time.

Borehole magnetics for the estimation of unknown foundation pile depth (시추공자력계를 이용한 기초파일 근입심도 추정)

  • Jo, Churl-Hyun;Chung, Hyun-Key;Cho, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.161-167
    • /
    • 1999
  • There is an increasing need for the estimation of foundation piles whose depths are unknown. Especially in repair and reinforcement works or in safety inspection and assessment to the big structures whose foundations are piles, the accurate information about the depth of foundation piles is one of the most important factors. A borehole magnetic tool has been developed and tested to meet this object. The fundamental base is that there usually exist many re-bars inside the foundation structure such as piles, and these re-bars are ferromagnetic materials which cause strong induced magnetic field comparable to the earth magnetic field. It utilizes flux-gate type magnetometer which measures 3-components of the magnetic field. Taking vertical derivatives of vertical component of the measured magnetic field, we can expect the error limit of estimating the depth of the pile end less than 20 cm in favorable condition. The maximum measurable distance is about 3 m to the pile from the borehole. The field data show that borehole magnetics is one of the most accurate, fast, and reliable methods for this object so far, as long as there is no magnetic materials such as deep located steel pipe or power cables close to the foundation piles.

  • PDF