• Title/Summary/Keyword: flux recovery

Search Result 197, Processing Time 0.028 seconds

THE RELATIONSHIP BETWEEN PARTICLE INJECTION RATE OBSERVED AT GEOSYNCHRONOUS ORBIT AND DST INDEX DURING GEOMAGNETIC STORMS (자기폭풍 기간 중 정지궤도 공간에서의 입자 유입률과 Dst 지수 사이의 상관관계)

  • 문가희;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2003
  • To examine the causal relationship between geomagnetic storm and substorm, we investigate the correlation between dispersionless particle injection rate of proton flux observed from geosynchronous satellites, which is known to be a typical indicator of the substorm expansion activity, and Dst index during magnetic storms. We utilize geomagnetic storms occurred during the period of 1996 ~ 2000 and categorize them into three classes in terms of the minimum value of the Dst index ($Dst_{min}$); intense ($-200nT{$\leq$}Dst_{min}{$\leq$}-100nT$), moderate($-100nT{\leq}Dst_{min}{\leq}-50nT$), and small ($-50nT{\leq}Dst_{min}{\leq}-30nT$) -30nT)storms. We use the proton flux of the energy range from 50 keV to 670 keV, the major constituents of the ring current particles, observed from the LANL geosynchronous satellites located within the local time sector from 18:00 MLT to 04:00 MLT. We also examine the flux ratio ($f_{max}/f_{ave}$) to estimate particle energy injection rate into the inner magnetosphere, with $f_{ave}$ and $f_{max}$ being the flux levels during quiet and onset levels, respectively. The total energy injection rate into the inner magnetosphere can not be estimated from particle measurements by one or two satellites. However, the total energy injection rate should be at least proportional to the flux ratio and the injection frequency. Thus we propose a quantity, “total energy injection parameter (TEIP)”, defined by the product of the flux ratio and the injection frequency as an indicator of the injected energy into the inner magnetosphere. To investigate the phase dependence of the substorm contribution to the development of magnetic storm, we examine the correlations during the two intervals, main and recovery phase of storm separately. Several interesting tendencies are noted particularly during the main phase of storm. First, the average particle injection frequency tends to increase with the storm size with the correlation coefficient being 0.83. Second, the flux ratio ($f_{max}/f_{ave}$) tends to be higher during large storms. The correlation coefficient between $Dst_{min}$ and the flux ratio is generally high, for example, 0.74 for the 75~113 keV energy channel. Third, it is also worth mentioning that there is a high correlation between the TEIP and $Dst_{min}$ with the highest coefficient (0.80) being recorded for the energy channel of 75~113 keV, the typical particle energies of the ring current belt. Fourth, the particle injection during the recovery phase tends to make the storms longer. It is particularly the case for intense storms. These characteristics observed during the main phase of the magnetic storm indicate that substorm expansion activity is closely associated with the development of mangetic storm.

Preparation of Composite Membranes for Recovery of Unreacted Olefin Monomers (미반응 올레핀계 모노머 회수를 위한 복합막의 제조)

  • Kim, Hyun-Gi;Kim, Sang-Yong;Kim, Sung-Soo
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • Composite membranes were prepared for membrane/cold condensation process for recovery of unreacted olefin monomer from the polyolefin polymerization process by solution coating and plasma polymerization processes. Poly(dimethylsiloxane) (PDMS) solution was coated on polysulfone (PSF) support and increase of prepolymer content in solution made more dense membrane structure to result in the increase of separation factor while absolute flux decreased. Permeation of organic materials through the composite membranes follows the sorption and diffusion mechanism, which brought about the results that separation factor increased with critical temperature of the organic materials, and that flux increased with the increase of the molar volume. Crosslinking period affected the permeation characteristics. Other types of composite membranes were fabricated by plasma polymerization of siloxane materials on polypropylene (PP) and PSF supports. PP was tested as a support for composite membranes, which had not been used so far in solution coating process, and plasma polymerization made the composite membranes equivalent performances to those of membranes prepared by solution coating process.

Optimization of chemical cleaning for reverse osmosis membranes with organic fouling using statistical design tools

  • Park, Ki-Bum;Choi, Changkyoo;Yu, Hye-Weon;Chae, So-Ryong;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.474-484
    • /
    • 2018
  • The cleaning efficiency of reverse osmosis (RO) membranes inevitably fouled by organic foulants depends upon both chemical (type of cleaning agent, concentration of cleaning solution) and physical (cleaning time, flowrate, temperature) parameters. In attempting to determine the optimal procedures for chemical cleaning organic-fouled RO membranes, the design of experiments concept was employed to evaluate key factors and to predict the flux recovery rate (FRR) after chemical cleaning. From experimental results and based on the predicted FRR of cleaning obtained using the Central Composite Design of Minitab 17, a modified regression model equation was established to explain the chemical cleaning efficiency; the resultant regression coefficient ($R^2$) and adjusted $R^2$ were 83.95% and 76.82%, respectively. Then, using the optimized conditions of chemical cleaning derived from the response optimizer tool (cleaning with 0.68 wt% disodium ethylenediaminetetraacetic acid for 20 min at $20^{\circ}C$ with a flowrate of 409 mL/min), a flux recovery of 86.6% was expected. Overall, the results obtained by these experiments confirmed that the equation was adequate for predicting the chemical cleaning efficiency with regards to organic membrane fouling.

Chemically enhanced steam cleaning for the control of ceramic membrane fouling caused by manganese and humic acid (망간과 휴믹산에 의한 세라믹 막 오염의 제어를 위한 약품 스팀세정의 적용)

  • An, Sun-A;Park, Cheol-Gyu;Lee, Jin-San;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.425-436
    • /
    • 2021
  • In this study, chemically enhanced steam cleaning(CESC) was applied as a novel and efficient method for the control of organic and inorganic fouling in ceramic membrane filtration. The constant filtration regression model and the resistance in series model(RISM) were used to investigate the membrane fouling mechanisms. For total filtration, the coefficient of determination(R2) with an approximate value of 1 was obtained in the intermediate blocking model which is considered as the dominant contamination mechanism. In addition, most of the coefficient values showed similar values and this means that the complex fouling was formed during the filtration period. In the RISM, R c/R f increased about 4.37 times in chemically enhanced steam cleaning compared to physical backwashing, which implies that the internal fouling resistance was converted to cake layer resistance, so that the membrane fouling hardly to be removed by physical backwashing could be efficiently removed by chemically enhanced steam cleaning. The results of flux recovery rate showed that high-temperature steam may loosen the structure of the membrane cake layer due to the increase in diffusivity and solubility of chemicals and finally enhance the cleaning effect. As a consequence, it is expected that chemically enhanced steam cleaning can drastically improve the efficiency of membrane filtration process when the characteristics of the foulant are identified.

A Study on Operating Condition of Test-Bed Plant using Membrane filtration of D Water Treatment Plant in Gwang-Ju (D정수장 정밀여과막 실증플랜트의 최적 운전조건 연구)

  • Yang, Hyung-Jae;Yi, Seung-Hoon;Moon, Kyung-Ran
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.155-163
    • /
    • 2017
  • Membrane filtration has become more popular in drinking water treatment recently, since the filtration can control not only particulate matters but also pathogenic microorganisms such as giardia and cryptosporidium very effectively. Pilot-scale ($120m^3/d$ of treatment capacity) and test-bed ($25,000m^3/d$ of treatment capacity) microfiltration experiments were conducted to find optimum operating mode and the critical flux. Optimum operating mode of pilot-test was assessed as inflow 1.0 min, filtration 36.5 min, air backwash 0.9 min, backwash 1.0 min and outflow 1.0 min with 50 LMH ($L/min{\cdot}m3^$) of critical flux. Critical Flux was calculated to be $50L/m^2-h$ (within TMP 0.5 bar) based on the increase formula of the transmembrane pressure difference according to the change of time at Flux 20, 40, 56 and 62 LMH in pilot operation. Chemical cleaning was first acid washed twice, and alkali washing was performed secondarily, and a recovery rate of 95% was obtained in the test-bed plant. The results of operating under these appropriate conditions are as follows. Turbidity of treated water were 0.028, 0.024, 0.026 and 0.028 NTU in spring, summer, autumn and winter time, respectively. Microfiltration has superior treatment capability and performance characteristics in removing suspended solids and colloidal materials, which are the main cause of turbidity and important carrier of metal elements, and it has shown great potential in being an economically substitute to traditional processes (sand filtration).

Comparison and Optimization of Flux Chamber Methods of Methane Emissions from Landfill Surface Area (매립지 표면의 메탄 발산량 실측을 위한 플럭스 챔버의 방법론적 비교와 최적화)

  • Jeong, Jin Hee;Kang, Su Ji;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.535-542
    • /
    • 2016
  • As one of the most cost-effective methods for surface emission measurements, flux chamber method has been used worldwide. It can be classified into two types: SFC (with slope method) and DFC (with steady-state method). SFC (static flux chamber) type needs only simple equipment and is easy to handle. However, the value of flux might vary with SFC method, because it assumes that the change of concentration in chamber is linear with time. Although more specific equipments are required for DFC (dynamic flux chamber) method, it can lead to a constant result without any ambiguity. We made a self-designed DFC using a small and compact kit, which recorded good sample homogeneity (RSD < 5%) and recovery ( > 90%). Relative expanded measurement uncertainty of this improved DFC method was 7.37%, which mainly came from uncontrolled sweep air. The study shows that the improved DFC method can be used to collect highly reliable emission data from large landfill area.

A Study on the Replacement of a Light Burnt Dolomite with a Waste MgO-C Refractory Material for a Steel-Making Flux in Electric Arc Furnace (폐 MgO-C계 내화재의 전기로(EAF) 제강 Flux용 경소돌로마이트 대체 사용 연구)

  • Hyun-Jong Kim;Jong-Deok Lim;Hang-Goo Kim;Jei-Pil Wang
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.44-51
    • /
    • 2022
  • In the steelmaking process using an electric arc furnace (EAF), light-burnt dolomite, which is a flux containing MgO, is used to protect refractory materials and improve desulfurization ability. Furthermore, a recarburizing agent is added to reduce energy consumption via slag foaming and to induce the deoxidation effect. Herein, a waste MgO-C based refractory material was used to achieve the aforementioned effects economically. The waste MgO-C refractory materials contain a significant amount of MgO and graphite components; however, most of these materials are currently discarded instead of being recycled. The mass recycling of waste MgO-C refractory materials would be achievable if their applicability as a flux for steelmaking is proven. Therefore, experiments were performed using a target composition range similar to the commercial EAF slag composition. A pre-melted base slag was prepared by mixing SiO2, Al2O3, and FeO in an alumina crucible and heating at 1450℃ for 1 h or more. Subsequently, a mixed flux #2 (a mixture of light-burnt dolomite, waste MgO-C based refractory material, and limestone) was added to the prepared pre-melted base slag and a melting reaction test was performed. Injecting the pre-melted base slag with the flux facilitates the formation of the target EAF slag. These results were compared with that of mixed flux #1 (a mixture of light-burnt dolomite and limestone), which is a conventional steelmaking flux, and the possibility of replacement was evaluated. To obtain a reliable evaluation, characterization techniques like X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) spectrometry were used, and slag foam height, slag basicity, and Fe recovery were calculated.

Analysis on the Magnetic Field Distribution of Low-Tc Superconducting Power Supply Using Finite Element Method (유한요소법을 이용한 저온초전도전원장치의 자기장분포 해석)

  • Bae, Duck-Kweon;Yoon, Yong-Soo;Kim, Ho-Min;Ahn, Min-Cheol;Kim, Yeong-Sik;Han, Tae-Su;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.739-741
    • /
    • 2001
  • Magnetic field distribution of rotating flux type Low-Tc superconducting (LTS) power supply with respect to the applied current on exciters is investigated in detail by using Finite Element Method (FEM). LTS power supply consists of two exciters, a rotor, a stator and superconductor foil attached to the inner surface of the stator and LTS load. The current pumping of LTS power supply is induced by partial-quenching and recovery of superconductor foil. For this reason, magnetic flux density on superconductor foil must be sufficiently greater than the its critical magnetic density. In this analysis, the normal spot on superconductor foil appears more than 10A of excitation current. The results of this analysis are calculated and compared with the experimental results.

  • PDF

Determination of operating factor and characteristics of membrane fouling on hybrid coagulation pretreatment-UF system in drinking water treatment (정수처리 응집·한외여과 시스템의 연속운전을 통한 운전조건 결정 및 막오염 특성에 관한 연구)

  • Moon, Seong-Yong;Yun, Jong-Sub;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.267-274
    • /
    • 2008
  • This study is about efficiency of pretreatment process and operating factor to membrane process at continuous coagulation/ultrafiltration process in water treatment. The capacity of pilot plant was $0.06{\beta}(C)/d$. The raw water used was from Nakdong stream which was characteristized by high organic matter and high turbidity. The result of the test was that coagulation is good process as to high removal rate to organic matter and turbidity but It caused problem to membrane pore blocking. This paper is to determine the membrane fouling potential under different membrane flux, backwash pressure and linear velocity. Backwash pressure and flux is important parameter on operation of membrane system. Those are directly affected on membrane system. When backwash pressure increased from 150 kPa to 200 kPa, the result showed that fouling (pressure increase rate) changed from 3.69 kPa/h to 0.93 kPa/h and the recovery rate changed from 90.7 % to 82.0 %. Linear velocity had slightly effect on fouling. Linear velocity increased from 0.2 m/s to 0.5 m/s, the corresponding pressure rate changed from 0.93 kPa/d to 0.77 kPa/d.

Novel high performanced and fouling resistant PSf/ZnO membranes for water treatment

  • Sarihan, Adem;Eren, Erdal
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.563-574
    • /
    • 2017
  • Antibacterial effective, high performanced, novel ZnO embedded composite membranes were obtained by blendig ZnO nanoparticles with polysulfone. IR, TG/DTG, XRD and SEM analysis were performed to characterize structure and morphology of ZnO nanoparticles and composite membranes. Contact angle, EWC, porosity and pore structure properties of composite membranes were investigated. Cross-flow filtration studies were performed to investigation of performances of prepared membranes. It was found from the cross section SEM images that ZnO nanoparticles dispersed homogenously up to additive amount of 2% and the membrane skin layer thicknesses increased in the presence of ZnO. Contact angle of pure PSf membranes were reduced from $70^{\circ}$ to $55^{\circ}$ after addition of 4% ZnO. Porosity of composite membrane contains 1% ZnO was higher about 22% than pure PSf membrane. BSA rejection ratio and PWF of 0.5% ZnO embedded composite membrane became 2.2 and 2.3 times higher than pure PSf membrane. It was determined from flux recovery ratios that ZnO additive increased the fouling resistance of composite membranes. Also, the bacterial killing ability of ZnO is well known and there are many researches related to this in the literature. Therefore, it is expected that prepared composite membranes will show antibacterial effect.