• Title/Summary/Keyword: flux material

Search Result 917, Processing Time 0.036 seconds

Characteristics according to increase of the fault current level of Flux-Coupling Type Superconducting Fault Current Limiter(SFCL) (자속커플링 SFCL의 사고전류 변화에 따른 전류제한특성 분석)

  • Kim, Yong-Jin;Han, Byoung-Sung;Du, Ho-Ik;Park, Chung-Ryul;Du, Seung-Gyu;Kim, Min-Ju;Ha, Seung-Ryong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.288-288
    • /
    • 2008
  • The flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO thin films. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO thin film was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO thin films was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics according to fault current level in the flux-coupling type SFCL. The experiment results that the fault current limiting characteristics was improved according to increase of the fault current level.

  • PDF

Analysis of Operational Characteristics of Separated Three-Phase Flux-Lock SFCL (삼상 분리형 자속구속형 전류제한기의 동작 특성 분석)

  • Doo, Seung-Gyu;Du, Ho-Ik;Park, Chung-Ryul;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.289-289
    • /
    • 2008
  • We investigated the operational characteristics of the separated three-phase flux-lock type superconducting fault current limiter (SFCL). The single-phase lock type SFCL consist of two coils, which are wound in parallel through an iron core. The high-$T_c$ superconducting(HSTC) thin film connected in series with secondary coil. The separated three-phase flux-lock type SFCL consist of three single-phase flux-lock type SFCL. In a normal condition, the SFCL is not operate. When a fault occurs, the current of a HSTC thin film exceeds its critical current by fault current, the resistance of the HSTC thin film generated. Therefore fault current was limited by SFCL. The separated three-phase flux-lock type SFCL are operated in fault condition such as the the single line-to-ground fault, the double line-to-ground fault and the triple line-to-ground fault. The experimental results, the SFCL operational characteristics was dependent on fault condition.

  • PDF

Operational Characteristics in Integrated Three-Phase Flux-Lock Type SFCL (3상 일체화된 자속구속형 고온초전도 전류제한기의 동작특성)

  • Lim, Sung-Hun;Han, Tae-Hee;Park, Hyoung-Min;Cho, Yong-Sun;Song, Jae-Joo;Choi, Myoung-Ho;Hwang, Jong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.112-113
    • /
    • 2006
  • The operational characteristics of the integrated three-phase flux-lock type superconducting fault current limiter (SFCL) were analyzed. The suggested three-phase SFCL consisted of a three-phase flux-lock reactor and three high-$T_c$ superconducting (HTSC) elements. The former has three windings wound on an iron core, each of which has the same turn's ratio between coil 1 and coil 2. The latter are connected in series with coil 2 of each phase. The integrated three-phase flux-lock type SFCL showed the operational characteristics that the fault phase could affect the sound phase, which resulted in quenching the HTSC element in the sound phase. Through the computer simulation applying numerical analysis for its three-phase equivalent circuit, the fault current limiting characteristics of the integrated three-phase flux-lock type SFCL according to the ground fault types were compared.

  • PDF

The Analysis of Operation Mode of Three-Phase Flux-Lock Type Superconducting Fault Currents Limiter (삼상 자속구속형 한류기의 동작모드분석)

  • Hwang, Jong-Sun;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Youn-Sun;Lee, Na-Young;Nam, Gueng-Hyun;Han, Tea-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.46-48
    • /
    • 2006
  • We investigated the analysis of operation mode of three-phase flux-lake type superconducting fault current limiter(SFCL). The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero and the SFCL has negligible influence on the power system, However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes elements of all phase-quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase.

  • PDF

Growth Characteristics of AlN by Plasma-Assisted Molecular Beam Epitaxy with Different Al Flux (플라즈마분자선에피탁시법을 이용한 알루미늄 플럭스 변화에 따른 질화알루미늄의 성장특성)

  • Lim, Se Hwan;Lee, Hyosung;Shin, Eun-Jung;Han, Seok Kyu;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.539-544
    • /
    • 2012
  • We have grown AlN nanorods and AlN films using plasma-assisted molecular beam epitaxy by changing the Al source flux. Plasma-assisted molecular beam epitaxy of AlN was performed on c-plane $Al_2O_3$ substrates with different levels of aluminum (Al) flux but with the same nitrogen flux. Growth behavior of AlN was strongly affected by Al flux, as determined by in-situ reflection high energy electron diffraction. Prior to the growth, nitridation of the $Al_2O_3$ substrate was performed and a two-dimensionally grown AlN layer was formed by the nitridation process, in which the epitaxial relationship was determined to be [11-20]AlN//[10-10]$Al_2O_3$, and [10-10]AlN//[11-20]$Al_2O_3$. In the growth of AlN films after nitridation, vertically aligned nanorod-structured AlN was grown with a growth rate of $1.6{\mu}m/h$, in which the growth direction was <0001>, for low Al flux. However, with high Al flux, Al droplets with diameters of about $8{\mu}m$ were found, which implies an Al-rich growth environment. With moderate Al flux conditions, epitaxial AlN films were grown. Growth was maintained in two-dimensional or three-dimensional growth mode depending on the Al flux during the growth; however, final growth occurred in three-dimensional growth mode. A lowest root mean square roughness of 0.6 nm (for $2{\mu}m{\times}2{\mu}m$ area) was obtained, which indicates a very flat surface.

Investigation of the Hydraulic Stability of Agricultural Drainage Channels Installed Water Purification Materials by using Flow-3D (Flow-3D를 활용한 수질정화체가 설치된 농업용 배수로의 안정성 조사)

  • Kim, Sun-Joo;Park, Ki-Chun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.3-9
    • /
    • 2007
  • In this study, the effect of the purification materials is analyzed and tested by Flow 3D and Hydraulic model test. Three dimension numerical analysis led from the research that sees abnormal form and the size back of the water purification material conferred the flowing water conduct inside the test channel against the test condition. Comparison it analyzed the flux distribution, a water depth of the channel which establishes the water purification materials the cross section, an interval of the water purification material, a conference with general channel, it change executed. As a result, the cross section ratio of the purification materials against and a flux change from the test which it sees. The interval of the purification materials in order to prevent three dimension that follows in decrease of increase and flux must decide an interval.

Effect of nanoparticle material for heat transfer enhancement (열전달 향상을 위한 나노물질 코팅재료의 영향에 대한 연구)

  • Jeon, Yong-Han;Kim, Nam-Jin
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • Nucleate boiling heat transfer is one of the most important phenomenon in the various industries. Especially, critical heat flux (CHF) refers to the upper limit of the pool boiling heat transfer region. Therefore, many researchers have found that CHF can be significantly increased by adding very small amounts of nanoparticles. In this study, the CHF and heat transfer coefficient were tested under the pool boiling state using copper and multi wall carbon nanotube nanoparticles. The results showed that two different types of nanoparticles deposited on the surface of two specimens made of the same material increased the heat flux in the nanoparticles with high conductivity, and there was no difference in the critical heat flux when the same material nanoparticles were deposited on the two different specimen surfaces.

Recovery Characteristics of a Flux-lock Type HTSC Fault Current Limiter after Fault Removal (자속구속형 고온초전도 사고전류 제한기의 사고제거 후 회복특성)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.812-815
    • /
    • 2007
  • To apply the superconducting fault current limiter(SFCL) into a power system, the analysis for its recovery characteristics as well as the consideration for its cooperation with other protecting machine such as a circuit breaker is required. The recovery characteristics of the flux-lock type SFCL like its current limiting characteristics are dependent on the winding direction of two coils. In this paper, the experiments of the current limiting and the recovery characteristics of the flux-lock type SFCL with YBCO thin film were performed. From the analysis on the experimental results due to the winding direction of two coils, the limited fault current in case of the additive polarity winding was observed to be lower than that for the case of the subtractive polarity winding. In addition, the recovery time was found to be faster in case of the additive polarity winding compared to the subtractive polarity winding.

The design of magnetic circuit of magnetostrictive actuator using finite element method (유한 요소 해석을 통한 자기변형 구동기 자기 회로 설계)

  • 이석호;박영우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.548-551
    • /
    • 2004
  • Magnetostrictive actuators have seen increasing use in fine positioning system because it has many advantages such as friction free, resolution of ${\mu}{\textrm}{m}$ or nm scale, and powerful output force. Usually, the magnetic circuit of magnetostrictive actuator has components which are flux return path, coil, and magnetostrictive material. It is classified in two types according to existence of the permanent magnet. The magnetic circuit having optimal performances transfer magnetic field which is obtained by providing input current at coil without energy loss. This paper described mathematical model of magnetic circuit for getting design variables. The modeling equation is obtained from the relations between flux and reluctance of the magnetic equivalent circuit. Also, finite element analysis has been used to study the performance of magnetic circuit according to change of design variables such as existence and shape of the permanent magnet, flux return path etc. The modification of dimensions enables us to optimize magnetic circuit.

  • PDF

Analysis on Current Limiting Characteristics of Double Quench Flux-Lock Type SFCL Using Its Third Winding (삼차권선을 이용한 이중퀜치 자속구속형 초전도한류기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.289-293
    • /
    • 2016
  • The flux-lock type superconducting fault current limiter (SFCL) connects the two parallel windings in parallel with a ferromagnetic core. We suggest that the double quench flux-lock type SFCL should add a third winding. We analyzed characteristics of the fault current and the peak current using the quench of the high-Tc superconducting element. The proposed SFCL's inductances of a primary winding and the third winding were fixed and the amplitude of inductance of the secondary winding was changed. We found that the fault current can be more effectively controlled through the analysis of the equivalent circuit and the short-circuit tests.