• Title/Summary/Keyword: flux flow

Search Result 1,680, Processing Time 0.031 seconds

A Development of the Performance Analysis Program Package of the Automatic Temperature Control System for Heating (난방용 자동온도조절기 성능분석용 프로그램 및 패키지 개발)

  • Kim, Yong-Ki;Woo, Nam-Sub;Lee, Tae-Won;Ahn, Byung-Cheon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1209-1214
    • /
    • 2009
  • Various automatic temperature control systems have been used widely in Korea for the conservation of heating energy and the enhancement of thermal comfort in residential buildings. But the heating control performance for automatic temperature control systems extensively vary with the design and operational conditions of the heating system, the climate condition and others. It was introduced in this study a numerical calculation program package to analyze heating control characteristics of the automatic temperature control system. This package is able to analyze the room air temperature, return water temperature, supplied heating flux and flow rate, and so on. One the other hand, the simulation results were verified by comparing with the field test results.

  • PDF

Assessment of CHF Correlations for Internally Heated Concentric Annulus Channels

  • Park, Jae-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.325-330
    • /
    • 1996
  • The existing CHF correlations for internally heated concentric annulus channels are assessed using KAIST CHF database for uniformly heated vertical annuli. Six annulus correlations (Jannsen-Kervinen. Barnett, Levitan-Lantsman, Kumamaru et al., Doerffer et al., and Bobkov et at.) are chosen for assessment based on literature survey and Groeneveld et al.'s CHF table for round tube is also assessed for comparison. Among the above correlations, two are inlet-condition type and others local conditions type. To make the comparison meaningful, the local-condition-type correlations are assessed in two ways: direct substitution method (DSM) and heat balance condition method (HBM). Totally 1174 data are classified into 10 groups based on pressure and mass flux conditions and correlations are assessed to each group separately. Prediction capability of each correlation depends on the data group and none shows the best prediction over the entire group. In overall, the correlations by Doerffer et al. and Jannsen et al. appear to be the best, but Barnett or Levitan-Lantsman correlations also show reasonable prediction for most groups. However, the low-pressure, ]ow flow CHFs are not well predicted by any correlations. The CHF table for round tubes overpredicts the CHF in annuli at fixed local conditions.

  • PDF

A multilayer Model for Dynamics of Upper and Intermediate Layer Circulation of the East Sea (동해의 상, 중층 순환 역학에 대한 다층모델)

  • 승영호;김국진
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.227-236
    • /
    • 1995
  • A simple layer model based on isophcnal coordinate is applied to the East Sea to examine the dynamics of circulation. The results confirm the existing knowledge about role of inflow-outflow and wind in driving the circulation. It is found, however, that the buoyancy flux generates quite different circulation pattern; it enhances the inflow-outflow driven circulation and has a convective nature. The circulation considering all these effects resembles the schematic one presently known. In the circulation, the intermediate layer is outcropped in the north off the northern boundary, ventilated here and flows cyclonically in the northern part of basin. This water, however, does not flow southward directly because of the strong eastward (separating from the coast) current in the layer above. This water also loses its potential vorticity while traveling around the periphery of the outcropping region and is thus characterized by minimum potential vorticity in the interior of the basin.

  • PDF

Heat Transfer Enhancement using Nano Particles coated Surface (나노 코팅을 이용한 열전달 향상에 대한 연구)

  • Gang, Myung-Bo;KIm, Woo-Joong;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.2
    • /
    • pp.8-14
    • /
    • 2018
  • A boiling heat transfer is used in various industry such as power generation systems, heat exchangers, air-conditioning and refrigerations. In the boiling heat transfer system, the critical heat flux (CHF) is the important factor, and it indicated safety of the system. It has kept up studies on the CHF enhancement. Recently, it is reported the CHF enhancement, when working fluid used the nanofluid with excellent thermal properties. Therefore, in this study, we investigated the influence of nano particles coated surface for heat transfer enhancement in pure water, oxidized multi-wall carbon nanotube nanofluid (OMWCNT), and oxidized graphene nanofluid (OGraphene). Nanoparticles were coated for 120 sec on the surface, and we measured the CHF at the flow velocities of 0.5, 1.0, and 1.5 m/sec, respectively. As the results, both of the OMWCNT and OGraphene nanofluids increased up to about 34.0 and 40.0%.

Numerical Study on a Diffused-mode Arc within a Vacuum Interrupter (진공차단부에서 발생하는 확산형 아크 수치해석)

  • Cho, S.H.;Hwang, J.H.;Lee, J.C.;Choi, M.J.;Kwon, J.R.;Kim, Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.479-482
    • /
    • 2008
  • In order to more closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, the thermal-fluid characteristics of high current vacuum arcs were calculated by a commercial multiphysics package, ANSYS, in order to obtain Joule heat, Lorentz force and the interactions with flow variables. We assumed the diffused-mode arc within an AMF vacuum interrupter. It was found with four different currents that the temperature distributions on the anode surface are diffused uniformly without concentration in 7kA for both types (cup and coil-type). But the arc plasma transition and an increase of thermal flux density for increasing the applied current have caused the change of temperature distributions on the anode surface. We should need further studies on the two-way coupling method and radiation model for arc plasmas in order to accomplish the advanced analysis method for multiphysics.

  • PDF

A Study on Forced Convective Boiling Heat Transfer of Non-Azeotropic Refrigerant Mixture R134a/R123 Inside Horizontal Smooth Tube (수평 전열관내 비공비 혼합냉매 R134a/R123의 강제대류비등 열전달에 관한 연구)

  • Lim, Tae-Woo;Han, Kyu-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.381-388
    • /
    • 2003
  • An experimental study was carried out to measure the heat transfer coefficient in flow boiling to mixtures of HFC-l34a and HCFC-123 in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6 MPa and in the ranges of heat flux 1-50 kw/$m^2$, vapor quality 0-100 % and mass velocity 150-600 kg/$m^2$s. Heat transfer coefficients of mixture were less than the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant. Measured data of heat transfer are compared to a few available correlations proposed for mixtures. The correlation of Jung et. al. satisfactorily predicted the present data, but the data in lower quality was overpredicted and underpredicted the high quality data. The correlation of Kandlikar considerably underpredicted most of the data. and showed the mean deviation of 35.1%.

Study on Condensation Heat Transfer and Pressure Drop Characteristics of R-22 in Brazed Plate Heat Exchanger (R-22를 사용한 용접형 판형 열교환기의 응축열전달 및 압력강하 특성에 관한 연구)

  • Jeon, Chang-Deok;Gwon, O-Gap;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.171-179
    • /
    • 2001
  • Experimental study has been carried out on the characteristics of pressure drop and heat transfer of brazed plate heat exchangers using R-22. Data are presented for the following range of variables: the mass flux (40∼90kg/$m^2$s), chevron angle ($20^{\circ}$, $35^{\circ}$, $45^{\circ}$) and inlet pressure of the refrigerant (1.4 and 1.6MPa). For both subcooled and two-phase flow, as chevron angle increases, pressure drop and heat transfer coefficient decrease. Condensation heat transfer coefficient and pressure drop were compared with the previously proposed correlations. Among therm, Traviss correlation agreed with experimental results within -40%∼-84% for heat transfer coefficient and -59%∼62% for pressure drop.

Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet(I) (원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성)

  • Lee, Chang-Ho;Kim, Yeong-Seok;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.386-398
    • /
    • 1998
  • The present experiment is conducted to investigate heat transfer characteristics on the impinging surface with secondary flows around circular nozzle jets. The changed vortex pattern around jet affects significantly the flow characteristics and heat transfer coefficients on the impinging surface. The effects of the jet vortex control are also considered with jet nozzle-to-plate distances and main jet velocities. The vortex pattern around a jet is changed from a convective instability to an absolute instability with a velocity suction ratio of the main jet and the secondary counterflow. With the absolute instability condition, the jet potential core length increases and the heat transfer on the impinging surface is increased by small scale eddies. The region of high heat transfer coefficients is enlarged with the high Reynolds number due to increasing secondary peak values. The effect of suction flows is influenced largely with collars attached the exit of the jet nozzle because the attached collar guides well the counterflow around the main jet.

Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevice-type vapor chamber heat pipe

  • Kim, Jong-Soo;Bae, Jae-Young;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.801-806
    • /
    • 2015
  • The experimental analysis of a crevice-type vapor chamber heat pipe (CVCHP) is investigated. The heat source of the CVCHP is a high-power light-emitting diode (LED). The CVCHP, which exhibits a bubble pumping effect, is used for heat dissipation in a high-heat-flux system. The working fluid is R-141b, and its charging ratio was set at 60 vol.% of the vapor chamber in a heat pipe. The total thermal conductivity of the falling-liquid-film-type model, which was a modified model, was 24% larger than that of the conventional model in the LED package. Flow visualization results indicated that bubbles grew larger as they combined. These combined bubbles pushed the working fluid to the top, partially wetting the heat-transfer area. The thermal resistance between the vapor chamber and tube in the modified design decreased by approximately 32%. The overall results demonstrated the better heat dissipation upon cooling of the high-power LED package.

A Study on the Development of Fouling and Plugging Margin Evaluation Methods for Shell-and-Tube Heat Exchangers (다관원통형 열교환기의 파울링 및 관막음 여유 평가법)

  • Hwang, Kyeong-Mo;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.55-60
    • /
    • 2003
  • As operating time of heat exchangers progresses, fouling generated by water-borne deposits increases and thermal performance decreases. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. The heat exchangers of nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions based on the ASME OM-S/G-Part 2 as a means of heat exchanger management. It is hard to estimate the heat performance trend and to establish the future management plan. This paper describes the fouling evaluation method which can evaluate the thermal performance for heat exchangers and estimate the future fouling variations and the plugging margin evaluation method which can reflect the current fouling level developed in this study. To develop the fouling and plugging margin evaluation methods for heat exchangers, fouling factor was introduced based on the ASME O&M codes and TEMA standards. For the purpose of verifying the two evaluation methods, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant.

  • PDF