References
- Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A., 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, Vol. 79, pp. 2252-2254. https://doi.org/10.1063/1.1408272
- Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., 2004, Electric Field Effect in Atomically Thin Carbon Films, Science, Vol. 306, pp. 666-669. https://doi.org/10.1126/science.1102896
- Das, S. K., Choi, S. U. S., and Yu, W., 2008, Nanofluids Science and Technology, John Wiley & Sons, Inc.
- Geim, A. K. and Kim, P., 2008, Carbon Wonderland. Scientific American, Vol. 298, pp. 90-97.
- Lee, J. and Mudawar, I., 2007, Assessment of the effectiveness of nanofluids for single-phase and twophase heat transfer in micro-channels, International Journal of Heat Mass Transfer, Vol. 50, No. 3-4, pp. 452-463. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.001
- H. Peng, G. Ding, W. Jiang, and Y. Gao, 2009, Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, International Journal of Refrigeration, Vol. 32, No. 6, pp. 1259-1270. https://doi.org/10.1016/j.ijrefrig.2009.01.025
- Kim, S. J., McKrell, T., Buongiorno, J., and Hu, L.-W., 2010, Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nuclear Engineering and Design, Vol. 240, No. 5, pp. 1186-1194. https://doi.org/10.1016/j.nucengdes.2010.01.020
- Ahn, H. S., Kim, H. D., Jo, H. J., Kang, S. H., Chang, S. H., and Kim, M. H., 2010, Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, International Journal of Multiphase Flow, Vol. 36, pp. 375-384. https://doi.org/10.1016/j.ijmultiphaseflow.2010.01.004
- Henderson, K., Park, Y. G., Liu, L., and Jacobi, A. M., 2010, Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube, International Journal of Heat and Mass Transfer, Vol. 53, No. 5-6, pp. 944-951. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.026
- Kim, Y. H. and Kim, N. J., 2017, Study on heat transfer performance change according to long-term operation using carbon nanotube and graphene nanofluid, Journal of the Korea Solar Society, Vol. 37, No. 1, pp. 15-23. https://doi.org/10.7836/kses.2017.37.1.015
- Jeon, Y. H., Kim, Y. H., and Kim, N. J., 2017, A study on the heat transfer and durability of carbon nano coating for the safety improvement of a pool boiling system, J. Korea Saf. Manag. Sci., Vol. 19, No. 1, pp. 211-217. https://doi.org/10.12812/KSMS.2017.19.1.211
- Mo, Y. H., Kim, N. J., Jeon, Y. H., and Lee, D. S., 2017, Critical heat flux measurement experiment to improve safety of copper nano-particle coated heat exchanger, J. Korea Saf. Manag. Sci., Vol. 19, No. 4, pp. 317-322. https://doi.org/10.12812/KSMS.2017.19.4.317
- Park, S. S., Kim, Y. H., Jeon, Y. H., Hyun, M. T., and Kim, N. J., 2015, Effects of spray-deposited oxidized multi-wall carbon nanotubes and graphene on poolboiling critical heat flux enhancement, Journal of Industrial and Engineering Chemistry. Vol. 24, pp. 276-283. https://doi.org/10.1016/j.jiec.2014.09.041
- Kline, S. J. and McClintock, F. A., 1953, Describing uncertainties in single-sample experiment, Mechanical Engineer, Vol. 75.
- Chang, S. H., Heong, Y. H., and Shin, B. S., 2006, Critical heat flux enhancement, Nuclear Engineering and Technology, Vol. 38, No. 8, pp. 753-762.
- Zuber, N., 1958, On stability of boiling heat transfer, ASME transactions, Vol. 80, pp. 711-714.
- Katto, Y. and Kurata, C., 1980, Critical heat flux of saturated convective boiling on uniformly heated plates in a parallel flow, International Journal of Multiplhase Flow, Vol. 6, No. 6, pp. 575-582. https://doi.org/10.1016/0301-9322(80)90052-X