• Title/Summary/Keyword: flux estimator

Search Result 125, Processing Time 0.043 seconds

Speed Sensorless Vector Control for High Performance of Induction Motor (유도전동기의 고성능제어를 위한 속도센서리스 벡터제어)

  • Dong Hwa Chung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.37-46
    • /
    • 1993
  • Recently, the elimination of speed sensors has been one of the important requirement in vector control systems, because the speed sensor spoil the ruggedness and simplicity of induction motor. This paper proposes sensorless vector control for high performance of induction motor. The proposed vector control scheme is based on a rotor flux and speed which are calculated from the stator voltage and currents with improved flux estimator. The characteristics of vector control employing stator voltage and current generally deteriorate as the speed gets lower acause the calculated rotor flux depends on the stator resistance and it is difficult to calculate rotor flux at low speed of standstill. This new control system is robust with respect to variations of the stator resistance and it makes possible to calculated rotor flux at low speed of standstill. These feature are verified by the simulation results.

  • PDF

Direct Torque Control of Induction Motors Using Closed Loop Flux Observer (폐루프 자속관측기를 이용한 유도전동기의 직접토크제어)

  • Geum, Won-Il;Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1046-1049
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer is an adaptive gain scheduling observer where motor speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimates of stator resistance and speed are included as observer parameters. Simulation results show that the proposed flux observer gives better control and estimation results than conventional flux estimator specially in low speed region.

  • PDF

ASYMMETRY OF MAGNETIC HELICITY FLUX IN EMERGING BIPOLAR ACTIVE REGIONS

  • Yang, Dan;Jiang, Yunchun;Yang, Jiayan;Bi, Yi;Yang, Bo
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.3
    • /
    • pp.105-113
    • /
    • 2014
  • We apply differential affine velocity estimator (DAVE) to the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) 12-min line-of-sight magnetograms, and separately calculate the injected magnetic helicity for the leading and the following polarities of nine emerging bipolar active regions (ARs). Comparing magnetic helicity flux of the leading polarity with the following polarity, we find that six ARs studied in this paper have the following polarity that injected more magnetic helicity flux than that of the leading polarity. We also measure the mean area of each polarity in all the nine ARs, and find that the compact polarity tend to possess more magnetic helicity flux than the fragmented one. Our results confirm the previous studies on asymmetry of magnetic helicity that emerging bipolar ARs have a polarity preference in injecting magnetic helicity. Based on the changes of unsigned magnetic flux, we divide the emergence process into two evolutionary stages: (1) an increasing stage before the peak flux and (2) a constant or decreasing stage after the peak flux. Obvious changes on magnetic helicity flux can be seen during transition from one stage to another. Seven ARs have one or both polarity that changed the sign of magnetic helicity flux. Additionally, the prevailing polarity of the two ARs, which injects more magnetic helicity, changes form the following polarity to the leading one.

Optimized Stator Flux Oriented Control of IM using Adaptive Speed Estimator (적응 속도추정기를 이용한 유도전동기의 최적 고정자 자속 기준제어)

  • 정인화;신명호;변철웅;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.161-165
    • /
    • 1997
  • For high performance ac drives, the speed sensorless vector control and the stator flux orientation concept have received increasing attention. This paper presents a new method of estimation the speed of AC induction machine(IM). To improve the speed estimation characteristics, accurate stator resistance variation is considered. The effectiveness of the proposed method is verified computer simulation.

  • PDF

Vector Control of Interior Permanent Magnet Synchronous Motor without Speed Sensor (속도센서 없는 매입형 영구자석 동기전동기의 벡터제어)

  • Choi, Jong-Woo;Lee, Seung-Hun;Kim, Heung-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1241-1249
    • /
    • 2007
  • Lately, many approaches of speed sensorless control method for Interior Permanent Magnet Synchronous Motor(IPMSM) ha, been developed. This paper proposes a novel sensorless algorithm for speed estimation of IPMSM. First of all, proposes sensorless method estimates flux of rotor using foundational voltage equation of IPMSM and then estimates position and speed of rotor using Phase Locked Loop(PLL). Proposed sensorless algorithm demonstrated through simulation using Matlab simulink and experiment.

Sensorless Speed Control of Induction Motor (유도전동기의 센서리스 속도제어)

  • Seo, Young-Soo;Cha, Kwang-Hun;Lee, Sang-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.509-511
    • /
    • 1997
  • A sensorless controller of induction motor has several advantage availability in a harsh environment. In this paper, the speed information is driving from the currents and the estimated stator flux. To obtain the estimated stator flux, this study is using the Estimator. The simulation results show that the proposed scheme has activity over a wide speed range and good response to load variations.

  • PDF

A Robust Sensorless Vector Control System for Induction Motors

  • Huh Sung-Hoe;Choy Ick;Park Gwi-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.443-447
    • /
    • 2001
  • In this paper, a robust sensorless vector control system for induction motors with a speed estimator and an uncertainty observer is presented. At first, the proposed speed estimator is based on the MRAS(Mode Reference Adaptive System) scheme and constructed with a simple fuzzy logic(FL) approach. The structure of the proposed FL estimator is very simple. The input of the FL is the rotor flux error difference between reference and adjustable model, and the output is the estimated incremental rotor speed Secondly, the unmodeled uncertainties such as parametric uncertainties and external load disturbances are modeled by a radial basis function network(RBFN). In the overal speed control system, the control inputs are composed with a norminal control input and a compensated control input, which are from RBFN observer output and the modeling error of the RBFN, repectively. The compensated control input is derived from Lyapunov unction approach. The simulation results are presented to show the validity of the proposed system.

  • PDF

Sensorless Vector Controlled Induction Machine in Field Weakening Region: Comparing MRAS and ANN-Based Speed Estimators

  • Moulahoum, Samir;Touhami, Omar
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.241-248
    • /
    • 2007
  • The accuracy of all the schemes that belong to vector controlled induction machine drives is strongly affected by parameter variations. The aim of this paper is to examine iron losses and magnetic saturation effect in sensorless vector control of induction machines. At first, an approach to induction machine modelling and vector control scheme, which account for both iron loss and saturation, is presented. Then, a model reference adaptive system (MRAS) based speed estimator is developed. The speed estimation is modified in such a way that iron losses and the variation in the saturation level are compensated. Thus by substituting an artificial neural network flux estimator into the MRAS speed estimator. Experimental results are presented to verify the effectiveness of the proposed approach.

ASIG Design for Direct Torque Control of Induction Motor using VHDL (VHDL을 이용한 유도전동기의 직접 토크 제어 ASIC 설계)

  • Lee, H.J.;Kim, S.J.;Lee, B.C.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.336-338
    • /
    • 2000
  • Recently many studies have been performed for variable speed control of induction motor. Direct Torque Control(DTC) is emerging technique for variable speed control of PWM inverter driven induction motor. DTC allows the direct control of stator flux and instantaneous torque through simple algorithm. In this paper ASIC design technique using VHDL is applied to DTC based speed control of induction motor. ASIC for DTC based speed control is designed through the description of coordinate transformation, speed controller stator flux and torque estimator, stator flux and torque controller, stator flux position detector. FSM(Finite State Machine) and inverter voltage switching vector. Finally the above system has been implemented on the FPGA (XC4052XL-PG411). Simulation and experiment has been performed to verify the performance of the designed ASTC.

  • PDF

On-line Parameter Estimation of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 온라인 파라미터 추정)

  • Park, Ki-Tae;Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.761-762
    • /
    • 2006
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

  • PDF