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Abstract — In this paper, a robust sensorless vector control
system for induction motors with a speed estimator and an
uncertainty observer is presented. At first, the proposed
speed estimator is based on the MRAS(Mode Referece
Adaptive System) scheme and constructed with a simple
fuzzy logic(FL) approach. The structre of the proposed FL
estimator is very simple. The input of the FL is the rotor
flux error difference between reference and adjustable
model, and the output is the estimated incremental rotor
speed. Secondly, the unmodeled uncertainties such as
parametric uncertainties and external load disturbances are
modeled by a radial basis function network(RBFN).

In the overal speed control system, the control inputs are
composed with a norminal control input and a compensated
control input, which are from RBFN observer output and
the modeling error of the RBFN, repectively.

The compensated control input is derived from Lyapunov
unction approach. The simulation results are presented to
show the validity of the proposed system.

1.Introduction

In the field oriented speed control systems for induction
motors, there are two main issues, which are the speed
estimation and the robust performances to the lumped
uncertainties, repectively{1].
The accurate speed information is necessary to obtain high
performance torque and speed control characteristics. The
speed information is obtained from mechanical sensors
such as resolvers or pulse encoders which are directly
coupled with rotor of induction motors.
However, these sensors are usually expensive, highly
sensitive to the experimental environment, bulky and
reduce the control performance due to their limitation of
the resolutions. Therefore, various speed estimation
methods are developed to replace the mechanical sensors in
recent years. .
Among them, the MRAS based schemes are prefered to any
ther approaches because of their simplicity and the proven
stability[3]. The MRAS schemes, proposed by C.
Schauder[4], F. Z. Peng[5] are based on the idea of
comparing two different models. One is reference model
which doesn’t include rotor speed, and the other is
adjustable model which includes estimated rotor speed.
The difference between two outputs is due to the incorrect
estimated speed, so that an approapriate adaptiation law can
be used to estimate the correct rotor speed. In spite of their
simplicity, there are some disadvantages such as incorrect
speed estimation in the low speed area, high sensitivity to
the motor parameters, and, especially, the estimator gains
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must be tuned along the speed area and system parameters
variation. ]

The fundamental advantages of the fuzzy logic
controllers over the conventional systems are less
dependence of the mathematical model and capability of
converting a set of linguistic rules into control strategy.
Recently, soft computing methods such as fuzzy logic(FL)
and neural networks have been attractive in many fields of
industrial applications. [6]-[8]. In this paper, FL speed
estimator is proposed to overcome the difficulties of the
conventional MRAS scheme. The structre of the proposed
FL is very simple. The input of the FL is the rotor flux error
difference between reference and adjustable model, and the
output is the estimated incremental rotor speed.

Another issue in the field oriented speed control systems
is the robust performances to the lumped uncertainties such
as external disturbances, nolinearities, and parametric
uncertainties. - Recently, many researches have been

- developed to deal with them by applying the adaptive fuzzy

logic, fuzzy neural networks, and recurrent fuzzy neural
network, etc[1], [9]-[10].

Radial basis function networks(RBFN) is an architecture
of the instar-outstar model[11] and constructed with a input,
output and hidden layers of normalized Guassian activation
functions. Because the RBFN can be used for universal
approximator like a fuzzy and neural systems, it has been
introduced as one possible solution to the real multivariate
interpolation problem. In this paper, the RBFN is used to
deal with the lumped uncertainties in the sesorless vector
control system. Moreover, considering the modeling error
of RBFN, the compensated control input is derived for the
Lyapunov function to be stable.

The contents of this paper are as followings,

Firstly, a brief description of the speed control systems is
described, and secondly, MRAS speed estimation approach
including FL estimator is presented. The next part, RBFN
uncertainties observer is described, and the last section, the
simulation results are presented to verity the effectiveness
and usefulness of the proposed algorithm.

2.Speed Control System

The block diagram of the indirect vector control system is
shown in Fig. 1, and its simplified diagram with IP speed
controller is shown in Fig. 2. In the sesorless vector control
systems, the output of the IP speed controller is a estimated
value. From the Fig. 2, the following equations (D), (2) are

obtained.
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Fig. 1. Indirect Vector Control System.
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Fig. 2. Simplified IP Speed Control System.
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It could be expressed by state variable form as following,

X, =4X,+BU +C[T, @)

R 0 1
where, X, =[6, a"),]T, 4, =
. _ _ 0 -B/J

B 0 u,=i., C 0
n— kj/J’ n—lqs’ n_‘_l/J

The above equations are expressed by nominal values. But
in practical cases, the external disturbance and parametric
variation and any other uncertainties could exist.
Considering the unmodeled uncertainties, the following
equations could be obtained.

X, =(4, + A4)X, + (B, + AB)U, +C,T, +&
3)

~ where the £ is the unmodeled uncertainties.

Equation (3) could be'ekpressed to the following form.
X, =4,X,+BU +6 )

where 6= (A4, X, + AB U, +C,T, +¢)
From equation (4), if we know the exactly the uncertainties,

the perfect control input could be obtained as followings.
Ul =B'[X,-4,X,-6+KE] (5

where E =X, - X,

From the equation (4) with (5),

E +KE =0 (6)

3. Speed Estimator

3.1 MRAS Approach

In the MRAS speed estimation method, two models are
required, whose outputs are to be compared. One is voltage
model (or stator equation) and the other is current model
(or rotor equation). Because the voltage model doesn’t
include rotor speed, it may be regarded as a referecnce
model and the other may be regarded as an adjustable
model, which includes rotorspeed. The error between two
models can be used to derive a suitable adaptation law,
which generates the estimated rotor speed for the adjustable
model. The equations (7) and (8) are the stator equation (or
reference model) and the rotor equation (or adjustable
model), respectively. It is convenient to express the stator
and rotor equations in stationary frame because the terminal
voltages and currents are sensed in the stator.

Ae| L ||Vl [R+0oLp 0 iy
p /1;, L Ve 0 R +olp i;, )
Ao | _|-UT,  -w, WAL L |
p = +
ol Low  -urja,] T i @®

For the purpose of deriving an adaptation mechanism, the
following error equations can be obtained from (7) and (8).

1In general, rotor speed in (8) is a time varying value and

therefor, the adjustable model is- a linear time varying
system. However, we treat the rotor speed as a constant
during the adaptation processing.

£, -1/T. -, || €&
Py ,I= s
g, o, -1/T, )| ¢,

- A o
+ n (w r —Wr )
M ©
where, &, =A;, - A,
The.equafion (9) can be expressed as following. -
p[E]=4E-W (10)

The object of the above error equations is the derivation of
an adaptation mechanisim for (9) to be stable. For the
matrix 4 is SPR(Strictly Positive Real) Hermitian, an
adaptive law can be derived to satisfy the following
Popov’s criterion which required a finite negative limit on
the inner product of the input and output of the nonlinear
feedback systems.

"I[[E]' [#])dt = -r?, ve >0 (1D

If we let the adaptation law as (12),
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w, =@, + [®dr (12)
0
The following solutions can be derived.

q)l = kl(l;r l;r_ }’2)- }';r)

(13)
. ¢)2 = k2 (A;r 2’:1;— ﬂ';r l;r)
3.2 Fuzzy Logic Approach

In general, the MRAS speed estimation approaches are
more simple than any other strategies. However, there are
some difficuties in the scheme, which are strong sensitivity
to the motor parameters variations and necessity to detune
the estimator gains caused by different speed area. In this
paper, the fuzzy logic(FL) speed estimator is proposed to
reduce the difficulties. The fundamental advantage of the
fuzzy logic approach over the conventional control
strategies is a less dependence of the mathematical model
and capability of converting a set of linguistic rules into the
control strategy as known widely. The structre of the
proposed FL is very simple. The input of the FL is the rotor
flux- error difference between reference and adjustable
models, and the output is the estimated incremental rotor

speed. The rule bases are as followings.
R : if ®is A/ and bis A, thenAw, is C, (14)
where, ®=1;, 1;~ A, A,
Then, the estimated rotor speed could be obtained as
following. ' '

w,(k)=0,(k-)+Aw, (15)
Practically speaking, because the change of flux error
linearly changes the speed estimation value, the fuzzy rules
(14) could be constructed.

Table 1. Rule table.
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Fig. 3. The Proposed FL Speed Estimator

4. Uncertainty Observer
4.1 Radial Basis Function(RBFN)

Radial basis function networks(RBFN) is an architecture
of the instar-outstar model{1] and constructed with a input,
output and hidden layers of normalized Guassian activation
functions. Because the RBFN can be used for universal
approximator like fuzzy and neural systems, it has been
introduced as one possible solution of the real multivariate
interpolation problem. The RBFN is basically trained by
the hybrid learning rule: unsupervised learning in the input
layer and supervised learning in the output layer. The
weights in the output layer can be updated by using the
gradient descent method etc. The RBFN is based on the
concept of the locally tuned and overlapping receptive field
structure. Fig. 2 is a schematic diagram of a simple type of
the RBFN which consists of one input, one output and
single hidden layer.

Fig. 4. Structure of the RBFN

The hidden nodes in the RBFN have normalized Gaussian
activation function:

2 2
B 8,00 exp[—lx—mql /20'q:|
ERL Ay I (16)
=¥ zk:exp[—|x—mq| /ZUk]
where x is the input vector, m_ is the center, and o, is

the width of radial-basis function. Hidden node q gives a
maximum response to input vectors close to m, . Each

hidden node q is said to have its own receptive field ¢,(x)

in the input space, which is a region centered on m , and

o, are the mean and variance of the qth Gaussian function.

Gaussian functions are a particular example of radial-basis
functions. The output of the RBFN is simply the weighted
sum of the hidden node output. In this paper, RBFN output
has a simple form, multiplication of weights and hidden
layer output:

1 .

yi = ai(qél WigZq * 9:') a7
where a;(-) is the output activation function and§; is the
threshold value. The equation (17) could be expressed to
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simple form without 6;, and q;()setto 1 for single input,
single output.

!
y= Z Wig "2,
g=!

Z
(18)
43

- =[w, Wy wy]

=Wz
Z

The unsupervised part of the learning involves the

determination of the receptive field centers m g and widths

Ogs 9= 1,2,..,1. The proper centers m, can be found

by unsupervised learning rules such as the vector
quantization approach, competitive learning rules, or
simply the Kohonen learning rule:

Am josesy =1(x—m) (19)

where m is the center of the receptive field closest to

closest
the input vector x and the other centers are kept unchanged.

Then, once the receptive field centers m , have been found,
the widths o, are usually determined by an adhoc choice
such as the mean distance to the first few nearest neighbors
m (the y -nearest-neighbors heuristic). In the simplest case,
the following first-nearest-neighbor heuristic can be used:
m_-m
O'q = | q tlo.u:l| (20)
e

closest 1S the closest vectorto m .

The RBFN can also be trained by the error backp
ropagation algorithm and becomes a purely supervised
learning network. According to the chain rule, the
supervised learning rule for the RBFN can be derived as

where m

Awy =n,(d; - yi)z,

am, =an(di—yi)%; @)

!
Ao, = ﬂaZ(d,; =i %
: i I | .
where the derivatives dy,/ om, and dy,/dc, can be
obtained using the chain rule on Eqs. (16), (17).

4.2 Modeling the Uncertainties using RBFN

As we seen from (1) — (5), the exact information of the
uncertainties makes the overal system stable. In this paper,
the unkown uncertainties are modeled by RBFN, which
have been widely used as a nolinear function interpolator.
Considering the modeled uncertainties and the error from
approximator, the overal control input Ugcould be designed
as following [2],

U ¢ = U, +U. (22)
where the Un is the norminal control input with the RBFN

observer and Uc is a compensated control input for the
modeling error of the RBFN. Using the RBFN, Un could be
designed as

U,=B'[X,-4,X, -6 +KE] (3

For deriving the compensated control input, Uc, defining a
Lyapunov function as followings:

Vi) = 3B E oW =W (W =W") @9

The compensated control input can be derived for the
derivative of the Lyapunove function to be a negative value.
The derivative of the error equation is as following.

=X, ~(4X,+B (U, +U)+5)
=X,~(4X,+B(B'[X,— 4 X, -5+ KEJ+U)+0)
(25)
Take the time derivative of the Lyapunov equation, then
V() =E E, + L -w'yw
=-KE+E[(W-W)Z+e, -BU,]
W - W | ,
- KX+ X,[e, —BU.]+E W -W)2Z
+FW -WYW
(26)

From the above two equations(25),(26), the following
results can be derived.

E.=-KE -BU.+(W-WYZ @7

And the following compensating control input and updated
law could be derived.

U. = B;'ksgn(E,) @)
Aw, =n, (Y, — ¥)z

29)
Wli(k+l) = Awli + wli(k)

where
_ A&

!
h Fq (xl)
q=1

(<i<l)
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5. Simulation Results
Computer simulations for a 2.2[kW] induction motor
using the proposed fuzzy logic estimator and RBFN
uncertainties observer are presented.

Table. 2. 2-pole Induction Motor Parameters

Rated volt. | 150[V] Rs 0.385[ohm]
Rated freq. | 50[Hz] |} Rr 0.342[ohm]
Rated curr. | 14[A] Ls 0.03257[H]
Rated torq. | 14[Nm] Lr 0.03245[H]
Base speed | 1500[rpm] | Lm 0.03132[H]

J 0.0088[{Kgm]

Fig. 5 shows the resultant performance of the FL speed
estimation at 22 rpm(electrical speed).

25
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Fig. 5. Speed Estimaion(at 22rpm: electrical speed)
The speed response of the proposed control system with

RBFN uncertainties observer is shwon in Fig. 6. In this
simulation, the following conditions are occered at 0.5s.

J=5xJand B=5xB

0 0.1 02 03 04 05 06 a7

Fig. 6. Speed Control Response.

5. Conclusions

In this paper, a robust sensorless vector control system
using a fuzzy logic(FL) speed estimator and a radial basis
function networks(RBFN) observer for unmodeled
uncertainties is proposed and verified with a computer
simulation. Basically, the proposed FL estimator is MRAS
based approach, and the performance of the estimator . is
verified over the wide speed range, and could be used in
sensorless vector control system effectively. The overal -
control input is composed of norminal control input and
compensated control input. The norminal contol input is
computed with the RBFN observer, and the other is

. compensated control input for the modeling error of the

RBFN, which is derived by Lyapunov satbility approach.
The RBFN observer successfully observe the modeled
uncerties. However, because the terminal voltages and
currents are directly used in the estimtor, additional control
strategy has to be required for compensating the noise
effect. Moreover, the experimental verifications have to be
required for the practical case.
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