• Title/Summary/Keyword: flux estimation

Search Result 626, Processing Time 0.035 seconds

Indirect Detection of Rotor Position of Switched Reluctance Motor Based on Flux Linkage Analytic Model

  • Zhou, Yongqin;Hu, Bo;Wang, Hang;Jin, Ningzhi;Zhou, Meilan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.829-837
    • /
    • 2018
  • In this paper, a flux linkage model based on four magnetization curves fitting is proposed for three-phase 12/8 switched reluctance motor (SRM), with the analysis of the basic principle of flux detection method and function analysis method. In the model, the single value function mapping relationship between position angle and flux is established, which can achieve a direct estimation of rotor position. The realization scheme of SRM indirect position detection system is presented. It is proved by simulation and experiment that the proposed scheme is suitable for rotor position detection of SRM, and has high accuracy of position estimation.

Improvement of Rotor Position Estimation of SRM using PLL technique (SRM의 회전자 위치추정 개선을 위한 PLL기법의 적용)

  • Baik, Won-Sik;Choi, Kyeong-Ho;Hwang, Don-Ha;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.200-202
    • /
    • 2005
  • In this paper, improved rotor position estimation for position sensorless control system of the SRM (Switched Reluctance Motor) is presented. For more accurate rotor position estimation, the PLL (Phase Locked Loop) based position interpolation is adapted. In the current-flux-rotor position lookup table based rotor position estimation, the inherent current and flux-linkage ripple can cause the position estimation error. Instead of the conventional low-pass filter, the PLL based position interpolation technique is used for the better dynamic performance. The developed rotor position estimation scheme is realized using TMS320F2812 digital signal processor and prototype 1-hp SRM.

  • PDF

A study on the effect of inverter nonlinear characteristic on the flux estimation of an induction motor (인버터의 비선형 특성이 유도전동기의 자속 추정에 미치는 영향에 대한 연구)

  • Kim, Sang-Hoon;Kim, Tae-Suk
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.167-174
    • /
    • 2008
  • In this paper, the analysis on type effect of inverter output voltage distortion on the control of an induction motor is discussed. The inverter output voltage is distorted differently from the reference voltage owing to the inverter nonlinear characteristic. The inverter nonlinear characteristic results from the voltage drop, the inherent characteristic of the power semiconductor, and the dead time for preventing the short circuit of the inverter leg. This characteristic distorts the inverter output voltage and then, causes the motor flux estimation error. Although this characteristics do not significantly effect in the general-purpose induction motor control, but significantly effect on the low-speed operation of high performance motor control such as the sensorless vector control.

  • PDF

Estimation Iron Loss Coefficients and Iron Loss Calculation of IPMSM According to Core Material (철심 재질에 따른 철손 계수 산정 및 IPMSM의 철손 계산)

  • Kang, Bo-Han;Kim, Yong-Tae;Cho, Gyu-Won;Lee, Jung-Gyu;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1269-1274
    • /
    • 2012
  • In this paper, the iron loss was calculated using estimated iron loss coefficient at 650W Interior Permanent Magnet Synchronous Motor(IPMSM) and 250W IPMSM. The iron loss coefficients was estimated different according to electrical steel material used to stator and rotor core in motor. Aspect of The rotating flux field and alternating flux field was confirmed by magnetic field behavior and harmonic analysis in stator core, the iron loss was calculated using flux density by Finite Element Method(FEM) and estimated coefficients by iron loss coefficient estimation proposed in this paper. The iron loss experiment was performed for verified to iron loss calculation, and the iron loss coefficients were verified by comparison of iron loss calculation value and experimental value.

Correction on Current Measurement Errors for Accurate Flux Estimation of AC Drives at Low Stator Frequency (저속영역에서 교류전동기의 정확한 자속추정을 위한 전류측정오차 보상)

  • Cho, Kyung-Rae;Seok, Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • This paper presents an on-line correction method of current measurement errors for a pure-integration-based flux estimation down to 1-Hz stator frequency. An observer-based approach is taken as one possible solution of eliminating the dc offset and the negative sequence component of unbalanced gains in the synchronous coordinate. At the same time, the positive sequence component estimation is performed by creating an error signal between a motor model reference and an estimated q-axis rotor flux established by a permanent magnet (PM) in the synchronous coordinate. The compensator utilizes a PI controller that controls the error signal to zero. The proposed technique further contains a residual error compensator to completely eliminate miscellaneous disturbances in the estimated flux. The developed algorithm has been implemented on a 1.1-kW permanent magnet synchronous motor (PMSM) drive to confirm the effectiveness of the proposed scheme.

Design of Sliding-mode Observer for Robust Speed Sensorless Induction Motor Drive

  • Son, Young-Dae;Lee, Jong-Nyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.488-492
    • /
    • 2004
  • In this paper, the design of a speed sensorless vector control system for induction motor is performed by using a new sliding mode technique based on current model flux observer. A current and flux observer based on the current estimation error is constructed. The proposed current observer includes a sliding mode function, which is derivative of the flux. That is, sliding mode observer which allows the estimation of both the rotor speed and flux based on the measurement of motor terminal quantities, would be proposed. And, a synergetic speed controller using the estimated speed signal is designed to stabilize the speed loop. Simulation results are presented to confirm the theoretical analysis, and to show the system performance with different observer gains and the influence of the motor parameter.

  • PDF

Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations (파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Kim, Seoung-Beom;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

A Speed Estimation Algorithm of SRM using Flux-linkage Modeling (쇄교자속 모델링을 통한 SRM의 속도추정 알고리즘)

  • Baik, Won-Sik;Kim, Nam-Hun;Choi, Kyeong-Ho;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.306-309
    • /
    • 2003
  • This paper presents a speed estimation algorithm of Switched Reluctance Motor(SRM) using flux-linkage modeling. The basic algorithm of this scheme is based on the flux linkage characteristic according to the phase current and the rotor position. A sufficient simulation and experimental data was used for neural network training. Through measurement of the phase flux linkage and phase currents, the neural network is able to estimate the rotor position and speed. The simulation result shows some good results, and possibility of this algorithm.

  • PDF

Performance Improvement of Sensorless Control of IPMSM using Active Flux Concept by Improved Current Estimators (유효 자속 개념을 이용한 IPMSM 센서리스 제어의 전류 추정기에 의한 성능개선)

  • Lee, Sung-Joon;Kim, Tae-Wan;Kim, Won-Seok;Kim, Marn-Go;Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.587-592
    • /
    • 2013
  • In this paper, the performance improvement of the sensorless control of IPMSM employing the active flux concept by the improved current estimator is presented. The accuracy of the current estimator used in a previous report is degraded when the motor parameters are not known exactly. A simple current estimator derived from estimated flux is proposed to improve the position estimation performance. In order to show the usefulness of the proposed estimation method, the simulation results using Matlab/Simulink and the experiment results are presented.

A new vector control method for induction motor (새로운 유도전동기 벡터제어 기법)

  • 변윤섭;왕종배;백종현;박현준
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.680-687
    • /
    • 2000
  • In this paper we present a new vector control scheme for induction motor. An exact knowledge of the rotor flux position is essential for a high-performance vector control. The position of the rotor flux is measured in the direct scheme or estimated in the indirect schemes. Since the estimation of the flux position requires a priori knowledge of the induction motor parameters, the indirect schemes are machine parameter dependent. The rotor resistance and stator resistance among the parameters change with temperature. Variations in the parameters of induction machine cause deterioration of both the steady state and dynamic operation of the induction motor drive. Several methods have been presented to minimize the consequences of parameter sensitivity in indirect scheme. In this paper new estimation scheme of rotor flux position is presented to eliminate sensitivity due to resistance change with temperature. Simulation results are used to verify the performance of the proposed vector control scheme.

  • PDF