• Title/Summary/Keyword: fluvial deposits

Search Result 75, Processing Time 0.021 seconds

Characterizing Hydraulic Properties by Grain-Size Analysis of Fluvial Deposits Depending on Stream Path in Korea

  • Oh, Yun-Yeong;Hamm, Se-Yeong;Chung, Sang Yong;Lee, Byeong Dae
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.129-137
    • /
    • 2013
  • The infiltration of rainwater into the surface soil is highly dependent on hydraulic variables, such as the infiltration rate, capillary fringe, moisture content, and unsaturated/saturated hydraulic conductivity. This study estimates the hydraulic conductivity (K) of fluvial deposits at three sites on the right and left banks of Nakdong River in Gyeongbuk Province, South Korea, including the Gumi, Waegwan, and Seongju bridge sites. The K values of 80 samples from 13 boreholes were estimated by using six grain-size methods (Hazen, Slichter, Kozeny, Beyer, Sauerbrei, and Pavchich formulae). The Beyer, Hazen, and Slichter methods showed a better relationship with K values along with an effective grain size than did the other three methods. The grain-size, pumping test, and slug test analyses resulted in different K values, but with similar K values in the grain-size analysis and pumping test. The lower K values of the slug test represent the uppermost fine sand layer.

창원시 대산면 낙동강변 퇴적층과 지하수의 철.망간 분포 특성

  • Lee Hyo-Min;Ham Se-Yeong;Jeong Jae-Yeol;Lee Jeong-Hwan;Kim Hyeong-Su;Ryu Sang-Hun;Kim Tae-Won;Kim Mun-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.324-327
    • /
    • 2006
  • The high Fe and Mn contents in riverbank filtered groundwater often provoke problems on the water quality, We analyzed the mineral and chemical compositions of the soil samples taken from the different depths of the fluvial deposits at various locations in the riverbank filtration area, Daesan-Myeon. The groundwater chemistry data were also collected from the equivalent depths with the soil samples at the boreholes in July and December, 2005. The relationships between the enrichment characteristics of Fe and Mn in the groundwater and the mineralogical and physicochemical properties of the fluvial deposits were carefully analyzed. The results indicate that the Fe and Mn contents in the groundwater vary with seasonally and show different enrichment behaviors.

  • PDF

Weathering Properties in Deposits of Fluvial Terrace at Bukhan River, Central Korea (북한강 하안단구 퇴적층의 풍화 특성)

  • 이광률
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.3
    • /
    • pp.425-443
    • /
    • 2004
  • Fluvial terraces is poorly developed along Bukhan River in Central Korea. Altitude from riverbed of T1 terraces are 18-29m, T2 terraces 2539m, respectively. Rubification index of T2 is 0.66, T1 is 0.54, and thickness of gravel weathering rind on gneiss of T2 are 14.0mm, granites of T2 are $\infty$, gneiss of T1 are 5.0mm and granites of T2 are 8.0mm, because weathering in deposits of T2 terraces, older than T1, is severer than T1 terraces. Since deposits in T2 have more active and longer weathering than T1, SiO$_2$/Al$_2$O$_3$ is 3.32 in T2 and 4.06 in T1, and SiO$_2$/R$_2$O$_3$ is 2.64 in T2 and 3.19 in T1. CIA(Chemical Index of Alteration) is 87.85% in T2 and 85.88% in T1. Kaolinite and halloysite are founded in deposits of T2 indicating high weathering, and are founded gibbsite made tv eluviation of kaolinite. However, deposits of T1 have no kaolinite, and are found plagioclase, weak mineral in weathering process. Comparing to previous researches by estimated age as altitude from riverbed, rubification index, thickness of gravel weathering rind, element contents and mineral composition, forming age of T2 terraces in Bukhan River are estimated in marine oxygen isotope stage 6 (130-190ka), and T1 terraces are marine oxygen isotope stage 4(59-74ka).

Depositional Facies Analysis from Seismic Attributes: Implication of Reservoir Characterization

  • Park Yong-Joon
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.2-16
    • /
    • 1999
  • This study includes structural analysis of the northern Pattani Basin, areal description of depositional facies, and their spatial relationships using 3-D seismic and well data. Well log data indicate that the representative depositional facies of the studied intervals are sandy, fluvial, channel-fill facies encased in shaly floodplain deposits. Seismic responses were predicted from a synthetic seismogram using a model of dominant depositional facies. Peak-to-trough amplitude and instantaneous frequency seismic attributes are used in depositional facies interpretation. Three Intervals A, B and C are interpreted on the successive stratal surfaces. The shallowest interval, A, is the Quaternary transgressive succession. Each stratal surface showed flow pattern variation of fluvial channel facies. Two transgressive cycles were identified in interval A. Interval B also indicated fluvial facies. Depositional facies architectures are described by interpreting seismic attributes on the successive stratal surfaces.

  • PDF

Palaeoflood Study by using the Slackwater Deposits (Slackwater 퇴적물을 이용한 고범람 연구)

  • KIM, SongHyun;TANAKA, Yukiya
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.163-175
    • /
    • 2011
  • Slackwater deposits are fine-grained flood sediments that deposited in areas of reduced velocity during flood period. These deposits have been used in numerous studies to estimate the magnitude and frequency of discrete flood events as the most commonly utilized PSIs (palaeostage indicators) in palaeoflood hydrology. Palaeoflood data by analysis of the slackwater deposits contribute to improve the estimation of flood-probability and reconstruct the palaeo-environment and past fluvial process. However, very few studies of these flood deposits have been carried out in Korea. Therefore, this study attempts to review the studies about slackwater deposits analysis and to investigate the characteristics, the research methods of slackwater deposits and the research-provability in Korea.

STRATIGRAPHIC ARCHITECTURE OF FLUVIAL SEQUENCES IN THE NORTHWESTERN PART OF KYONGSANG BASIN

  • Jo H. R.;Chough S. K.
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.47-56
    • /
    • 2000
  • The northwestern part of Kyongsang Basin largely comprises interbedded sandstone and mudstone with local conglomeratic deposits in the basin margin, representing marginal alluvial fans and fluvial depositional environments. The non-marine successions are divided into successive stratigraphic units, each of which is unique in facies assemblages and architecture of sandstone bodies. Two stratigraphic units, i.e., Sinpyong-Anpyong and Jotap units are examined in terms of stratigraphic architecture and its causative processes. Detailed architectural analysis reveals that the channel systems of Sinpyong-Anyong unit were of braided patterns, whereas those of Jotap unit were dominated by small-scale bedforms. The difference in fluvial styles can be attributed to the changes in amount and caliber of sediment load and water discharge, which might have been ultimately governed by basin tectonics, climate, and base level. Along with the marked change in fluvial style, the two successive units show repeated expansions of distal, water-logged floodplains and lacustrine facies in the basal and uppermost parts of Sinpyong-Anpyong unit, where the proportion of channel sandstone bodies is relatively low. These stratigraphic intervals are succeeded by the sequences with proximal, well-drained floodplain facies and relatively coarser-grained channel sandstone bodies of higher proportion, reflecting the progradation of proximal systems (the middle part of Sinpyong-Anpyong unit and Jotap unit). The overall stratigraphic architecture can be ascribed to the fluctuations in accommodation space and sediment supply induced by repeated basin subsidence.

  • PDF

Simulating Depositional Changes in River and It's Prediction (그래픽 모사기법을 이용한 하천 변천의 재현과 예측)

  • Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.579-592
    • /
    • 1994
  • A case study is presented where a fluvial system is modeled in three dimensions and compared to data gathered from a study of the Arkansas River. The data is unique in that it documents changes that affected a straight channel that was excavated within the river by the U.S. Army Corps of Engineers. Excavation plan maps and sequential aerial photographs show that the channel underwent massive deposition and channel migration as it returned to a more natural, meandering path. These records illustrate that stability of fluvial system can be disrupted either by catastrophic events such as floods or by subtle events such as the altering of a stream's equilibrium base level or sediment load. SEDSIM, Stanford's Sedimentary Basin Simulation Model, is modified and used to model the Arkansas River and the geologic processes that changed in response to changing hydraulic and geologic parameters resulting from the excavation of the channel. Geologic parameters such as fluid and sediment discharge, velocity, transport capacity, and sediment load are input into the model. These parameters regulate the frequency distribution and sizes of sediment grains that are eroded, transported and deposited. The experiments compare favorably with field data, recreating similar patterns of fluid flow and sedimentation. Therefore, simulations provide insight for understanding and spatial distribution of sediment bodies in fluvial deposits and the internal sedimentary structure of fluvial reservoirs. These techniques of graphic simulation can be contributed to support the development of the new design criteria compatible with natural stream processes, espacially drainage problem to minimize environmental disruption.

  • PDF

Occurrence of Placer Gold Deposits from the Takaoi Area of the Middle Kalimantan, Indonesia (인도네시아 중부 칼리만탄 따까오이 지역 사금광상의 산출상태)

  • Kim In-Joon;Lee Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.191-212
    • /
    • 2006
  • Placer gold deposits is mainly distributed in the Takaoi area. The alluvium is unconsolidated or semiconsolidated deposit consisting of gravel, sand, and soil beds in ascending order. They unconformably overlies the Carboniferous-Permian schist and Cretaceous granodiorite substratum. Based on detailed facies analysis, the alluvium can be interpreted as a typical fluvial deposits containing gravel and sand beds of channel-fill unit and soil deposit of floodplain. Gold grains are included mainly in the gravel bed and vein quartz is only contained gold among all kinds of gravels. These features indicates that the source rock of the gold grain is vein quartz and gold grains are separated from vein quartz during transport and abrasion. The reserves of gold in this area reach to at least 792 kg.

Characteristics of Geomorphological Surface and Analysis of Deposits in Fluvial Terraces at Upper Reach of Soyang River (소양강 상류 하안단구의 지형면 특성과 퇴적물 분석)

  • 이광률
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.1
    • /
    • pp.27-44
    • /
    • 2004
  • Upper reach of Soyang River at the northernmost area around Taebaek Mountains in South korea is profitable area to understand paleo-environment during the Quaternary such as tectonic process and climate change in the Korean Peninsula. This study explained paleo-environment affect to channel development by geomorphic distribution and characteristics of terrace surfaces, and analysis of deposits at 58 fluvial terraces in upper reach of Soyang River. Fluvial terraces were classified from T1 to T6. Most terraces are distributed on the point bar in meandering channel and one side along river valley. Terraces tend to decrease in number and superficial dissection rate to be higher and channel slope to be steeper if it takes long time from T1 to 6. The paleo-channel of Soyang River is supposed to be stronger meandering in period of T2 than T3. The weathering rind of gravel is generally thicker in older terrace, however, differs by contents of water and air in deposits. Based on the data of stratigraphy, grain size analysis, pollen analysis and rubification index in deposit, formation age of T5 terrace in Soyang River are estimated in MIS(Marine Oxygen Isotope Stage) 10, and T2 terrace are estimated in MIS 6.

Geomorphic Processes of the Terraces at Lower Reach of Yeongpyeong River in Chugaryeong Rift Valley, Central Korea (추가령 열곡 영평천 하류 단구지형의 형성과정)

  • Lee, Min-Boo;Lee, Gwang-Ryul;Kim, Nam-Shin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.6 s.111
    • /
    • pp.716-729
    • /
    • 2005
  • In the Yeongpyeong River, one of the branches of Hantan River, there 4 fluvial terraces are identified. During the Quaternary, lava flow from Hantan River had gone 4.5km into upstream Part of the Yeongpyeong River and damed its entrance, and resultantly its lower basin had become a lava-damed paleolake. This study deals with fluvial terrace surface classification, stratigraphic analysis, deposits analysis, and OSL age dating in from Gungpyeongri to Seongdongri in lower reach of Yeongpyeong River, in order to identify Seomorphological Process of the terrace landforms relating to duration of lava-damed paleolake. Terrace surface T4, named Baekeuiri Formation, has been located under Jeongok lava layer to indicate pre-lava river bed. Terrace surfaces T3 and T2 are supposed to be formed during paleolake time, based on $3{\~}4m$ thick sand deposits including pebble and cobble layers, and clay and silt layers intersected with sand ones in nearly horizontal bedding. Terrace T1 is estimated to be formed as post-lake fluvial terrace after dissection of lava dam, based on the more fresh phase of deposits and very low height from present riverbed. The results of the OSL age dating for the T3 deposit layers indicate approximately $33{\~}40ka$, and still lake phase at that time.