• Title/Summary/Keyword: flutter

Search Result 503, Processing Time 0.025 seconds

64 channels computerized cardiac mapping system (64채널 심장전기도 시스템 구현에 관한 연구)

  • 장병철;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.107-113
    • /
    • 1995
  • It is well known that multipoint and computerized intraoperative mapping systems improve the results of surgery for Wolff-Parkinson-White syndrome and show tremendous potential for opening an entirely new era of surgical intervention for the more common and lethal types of supraventricular tachyarrhythmias such as atrial flutter and atrial fibrillation. In addition, the ability to map and ablate the sometimes fleeting automatic atrial tachycardia is greatly enhanced by computerized mapping systems. In this study, we have developed 64 channel computerized data analysis system using microcomputer (Macintosh ${II}_{x}$) for basic research of electrophysiology and electrical propagation. The bipolar electrogram information is acquired from 64 cardiac sites simultaneously at a sampling rate of 1 ksampls/sec with continuous and total data storage of up to 30 seconds. When the reference electrogram is selected and reference point is picked up, delay time from the reference point is displayed on two dimensional diagram of the heart. System design permits easy expansion to almost 256 simultaneous sites. this system is expected to enable us to study pathophysiology of cardiac arrhythmia and to improve the result of diagnosis and surgical treatment for cardiac arrhythmia.

  • PDF

Vibration Control of Flexible Structures by using Conveying Fluid Pipe (유동유체가 흐르는 파이프에 의한 유연 구조물의 진동제어)

  • 류시웅;김건희;공창덕;오경원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • This paper describes a new vibration-suppression technique for flexible cantilevered structures by using a pipe containing an internal flow. The stability and dynamic response are analyzed based on the finite element method. The flutter limit and optimum stabilizing fluid velocity are determined in root locus diagrams. The impulse responses of the system are studied by the mode superposition method to observe the damping rate of the motion. The stabilizing effect of an internal flow is demonstrated by impulse responses of the structures with and without an material damping. It is found that the response of the pipe with flow of liquid has a larger effect of, stabilizing than that with flow of gas.

Wing Design Optimization of a Solar-HALE Aircraft

  • Lim, JaeHoon;Choi, Sun;Shin, SangJoon;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.219-231
    • /
    • 2014
  • We develop a preliminary design optimization procedure in this paper regarding the wing planform in a solar-powered high-altitude long-endurance unmanned aerial vehicle. A high-aspect-ratio wing has been widely adopted in this type of a vehicle, due to both the high lift-to-drag ratio and lightweight design. In the preliminary design, its characteristics need to be addressed correctly, and analyzed in an appropriate manner. In this paper, we use the three-dimensional Euler equation to analyze the wing aerodynamics. We also use an advanced structural modeling approach based on a geometrically exact one-dimensional beam analysis. Regarding the structural integrity of the wing, we determine detailed configuration parameters, specifically the taper ratio and the span length. Next, we conduct a multi-objective optimization scheme based on the response surface method, using the present baseline configuration. We consider the structural integrity as one of the constraints. We reduce the wing weight by approximately 25.3 % from that in the baseline configuration, and also decrease the power required approximately 3.4 %. We confirm that the optimized wing has sufficient flutter margin and improved static longitudinal/directional stability characteristics, as compared to those of the baseline configuration.

A comparison of CPP analysis among breathiness ranks (기식 등급에 따른 CPP (Cepstral Peak Prominence) 분석 비교)

  • Kang, Youngae;Koo, Bonseok;Jo, Cheolwoo
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • The aim of this study is to synthesize pathological breathy voice and to make a cepstral peak prominence (CPP) table following breathiness ranks by cepstral analysis to supplement reliability of the perceptual auditory judgment task. KlattGrid synthesizer included in Praat was used. Synthesis parameters consist of two groups, i.e., constants and variables. Constant parameters are pitch, amplitude, flutter, open phase, oral formant and bandwidth. Variable parameters are breathiness (BR), aspiration amplitude (AH), and spectral tilt (TL). Five hundred sixty samples of synthetic breathy vowel /a/ for male were created. Three raters participated in ranking of the breathiness. 217 were proved to be inadequate samples from perceptual judgment and cepstral analysis. Finally, 343 samples were selected. These CPP values and other related parameters from cepstral analysis are classified under four breathiness ranks (B0~B3). The mean and standard deviation of CPP is $16.10{\pm}1.15$ dB(B0), $13.68{\pm}1.34$ dB(B1), $10.97{\pm}1.41$ dB(B2), and $3.03{\pm}4.07$ dB(B3). The value of CPP decreases toward the severe group of breathiness because there is a lot of noise and a small quantity of harmonics.

Chaotic Behavior of 2-Dimensional Airfoil in Incompressible Flow (비압축성 유동장내 2차원 익형의 혼돈거동)

  • 정성원;이동기;이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.495-508
    • /
    • 1995
  • The self-excited vibrations of airfoil is related to the classical flutter problems, and it has been studied as a system with linear stiffness and small damping. However, since the actual aircraft wing and the many mechanical elements of airfoil type have various design variables and parameters, some of these could have strong nonlinearities, and the nonlinearities could be unexpectedly strong as the parameters vary. This abrupt chaotic behavior undergoes ordered routes, and the behaviors after these routes are uncontrollable and unexpectable since it is extremely sensitive to initial conditions. In order to study the chaotic behavior of the system, three parameters are considered, i.e., free-stream velocity, elastic distance and zero-lift angle. If the chaotic parameter region can be identified from the mathematically modeled nonlinear differential equation system, the designs which avoid chaotic regions could be suggested. In this study, by using recently developed dynamically system methods, and chaotic regions on the parameter plane will be found and the safe design variables will be suggested.

An Experimental Study on the Stochastic Control of a Aeroelastic System (공탄성시스템의 확률론적 제어에 대한 실험적 연구)

  • Kim, Dae-Jung;Park, Sang-Tae;Jeong, Jae-Uk;Heo, Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2007-2013
    • /
    • 1999
  • A Newly proposed control methodology applied to the aeroelastic system experiencing flutter is investigated and its performance is verified experimentally. The flexible cantilever beam slicked with piezofilm sensor and piezoceramic actuator is modelled in physical domain. Dynamic moment equation for the system is derived via Ito's stochastic differential equation and F-P-K equation. Also system's characteristics in stochastic domain is analyzed simultaneously. LQG controller is designed and used in physical and stochastic domain. It is shown experimentally that the vibration of beam is controlled effectively by designed LQG controller in physical domain. By comparing the result with that of LQG controller designed in stochastic domain, it is shown that the new control method, called Heo-stochastic control technique, has better performance as a controller.

Model Establishment of a Deployable Missile Control Fin Using Substructure Synthesis Method (부구조물 합성법을 이용한 접는 미사일 조종날개 모델 수립)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.813-820
    • /
    • 2005
  • A deployable missile control fin has some structural nonlinearities because of the worn or loose hinges and the manufacturing tolerance. The structural nonlinearity cannot be eliminated completely, and exerts significant effects on the static and dynamic characteristics of the control fin. Thus, It is important to establish the accurate deployable missile control fin model. In the present study, the nonlinear dynamic model of 4he deployable missile control fin is developed using a substructure synthesis method. The deployable missile control fin can be subdivided Into two substructures represented by linear dynamic models and a nonlinear hinge with structural nonlinearities. The nonlinear hinge model is established by using a system identification method, and the substructure modes are improved using the Frequency Response Method. A substructure synthesis method Is expanded to couple the substructure models and the nonlinear hinge model, and the nonlinear dynamic model of the fin is developed. Finally, the established nonlinear dynamic model of the deployable missile control fin is verified by dynamic tests. The established model is In good agreement with test results, showing that the present approach is useful in aeroelastic stability analyses such as time-domain nonlinear flutter analysis.

Dynamic Stability of Elastically Restrained Cantilever Pipe Conveying Fluid with Crack (크랙을 가진 탄성지지된 유체유동 외팔파이프의 동적 안정성)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.177-184
    • /
    • 2008
  • The dynamic stability of elastically restrained cantilever pipe conveying fluid with crack is investigated in this paper. The pipe, which is fixed at one end, is assumed to rest on an intermediate spring support. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of a crack severity and position, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. Also, the critical flow velocity for the flutter and divergence due to variation in the support location and the stiffness of the spring support is presented. The stability maps of the pipe system are obtained as a function of mass ratios and effect of crack.

Study on the Mechanism of pad Fluttering and the Prevention of pad Fluttering with the Variation of Preload in a Tilting Pad Journal Bearing (틸팅패드 저널베어링의 패드 fluttering 메커니즘 및 예압 변경을 통한 패드 fluttering 방지에 관한 연구)

  • 박철현;김재실;하현천;양승헌
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.291-297
    • /
    • 2003
  • Fluid film tilting pad journal bearings are widely used for large steam turbines. However, bearing problems by pad fluttering, such as fatigue damage in the upper unloaded pad, the break of locking pins and the wear of pinholes etc., are frequently taken place in the actual steam turbines. The purpose of the present work is to investigate on the mechanism of pad fluttering and the prevention of pad fluttering with the variation of preload(m) in a tilting pad journal bearing. It is estimated that upper pad is easy to flutter because the film shape of upper pad is diverged one from the analysis of moment direction acting on pivot point. Effective preload range in order to be statically loaded pad under all operating conditions is suggested as m>0.5. Also, as a bearing that can be prevented pad fluttering, design modified bearing is suggested. For the adjustment in actual steam turbines, bearing and rotor dynamic analysis are performed to identify bearing characteristics and to verify the reliability of rotor-bearing system.

  • PDF

Initial Experience with Total Thoracoscopic Ablation

  • Lee, Hee Moon;Chung, Su Ryeun;Jeong, Dong Seop
    • Journal of Chest Surgery
    • /
    • v.47 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • Background: Recently, a hybrid surgical-electrophysiological (EP) approach for confirming ablation lines in patients with atrial fibrillation (AF) was suggested. The aim of this approach was to overcome the limitations of current surgery- and catheter-based techniques to yield better outcomes. Methods: Ten consecutive patients with AF underwent total thoracoscopic ablation (TTA) following transvenous catheter EP ablation (residual gap and cavotricuspid isthmus [CTI] ablation). Holter monitoring was performed 6 months postoperatively. Results: Ten patients (90% with persistent AF) underwent successful hybrid procedures, and there was no in-hospital mortality. An EP study was performed in 8 patients and showed that successful antral ablation in all pulmonary veins was achieved in 7 of them. The median follow-up duration was 7.63 months (range, 6.7 to 11.6 months). Nine patients underwent Holter monitoring 6 months postoperatively, and the results indicated an underlying sinus rhythm without AF, atrial flutter, or atrial tachycardia lasting more than 30 seconds in all of the patients. There was no recurrence of AF during follow-up. Conclusion: A hybrid approach that consists of TTA followed by transvenous catheter EP ablation (residual gap and CTI ablation) yielded excellent outcomes in our patient population. A hybrid approach should be considered in patients with a high risk of AF recurrence.